Skip to main content
Log in

Radiation dose optimisation in dynamic volume CT of the heart: tube current adaptation based on anterior–posterior chest diameter

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To compare tube current adaptation based on 3 body mass index (BMI) categories versus anterior-posterior chest diameter (APD) for radiation dose optimisation in patients undergoing dynamic volume cardiac CT. Two cardiac imaging centres participated in the study. 20 patients underwent a prospectively triggered 320-slice single beat cardiac CT using the X-ray tube current [mA] manually adjusted to the patient’s BMI (group I). In 20 subsequent patients, the tube current was adapted according to the patient’s APD (group II). All other parameters were kept constant. Image noise was defined as the standard deviation of attenuation values and measured using a ROI in the descending aorta. Variation in image noise was statistically compared between both patient groups. Average and standard deviation of pixel noise were 29.1 HU and 14.8 HU in group I and 28.0 HU and 4.2 HU in group II. Inter-individual variation of pixel noise was significantly lower in group II compared to group I (p < 0.0001). Tube current adaptation based on APD is superior to stepwise adaptation based on BMI for optimising radiation dose in dynamic volume cardiac CT and therefore limits unnecessary radiation dose while ensuring diagnostic image quality in patients with diverse body habitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298(3):317–323

    Article  CAS  PubMed  Google Scholar 

  2. Gies M, Kalender WA, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 26(11):2235–2247

    Article  CAS  PubMed  Google Scholar 

  3. Lee EJ, Lee SK, Agid R, Howard P, Bae JM, terBrugge K (2009) Comparison of image quality and radiation dose between fixed tube current and combined automatic tube current modulation in craniocervical CT angiography. AJNR Am J Neuroradiol 30(9):1754–1759. doi:10.3174/ajnr.A1675

    Article  CAS  PubMed  Google Scholar 

  4. Catalano C, Francone M, Ascarelli A, Mangia M, Iacucci I, Passariello R (2007) Optimizing radiation dose and image quality. Eur Radiol 17(Suppl 6):F26–F32

    PubMed  Google Scholar 

  5. Horiguchi J, Matsuura N, Yamamoto H et al (2009) Evaluation of attenuation-based tube current control in coronary artery calcium scoring on prospective ECG-triggered 64-detector CT. Acad Radiol 16(10):1231–1240. doi:10.1016/j.acra.2009.04.008

    Article  PubMed  Google Scholar 

  6. Tsukagoshi S, Ota T, Okumura M, Muramatsu Y, Johkoh T (2006) Simulator-assisted setting of scan protocols for X-ray CT: development and clinical usefulness of the Scan Plan Simulator. Nippon Hoshasen Gijutsu Gakkai Zasshi 62(1):95–104

    PubMed  Google Scholar 

  7. Okumura M, Ota T, Kainuma K, Sayre JW, McNitt-Gray M, Katada K (2008) Effect of edge-preserving adaptive image filter on low-contrast detectability in CT systems: application of ROC analysis. Int J Biomed Imaging 2008:379486

    Article  PubMed  Google Scholar 

  8. Alessandri N, Di Matteo A, Rondoni G et al (2009) Heart imaging: the accuracy of the 64-MSCT in the detection of coronary artery disease. Eur Rev Med Pharmacol Sci 13(3):163–171

    CAS  PubMed  Google Scholar 

  9. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46(1):147–154

    Article  PubMed  Google Scholar 

  10. Lehman SJ, Abbara S, Cury RC et al (2009) Significance of cardiac computed tomography incidental findings in acute chest pain. Am J Med 122(6):543–549

    Article  PubMed  Google Scholar 

  11. Hamon M, Biondi-Zoccai GG, Malagutti P et al (2006) Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol 48(9):1896–1910

    Article  PubMed  Google Scholar 

  12. Kapoor D, Thompson RC (2009) Diagnostic accuracy of CT coronary angiography. Cardiol Clin 27(4):563–571

    Article  PubMed  Google Scholar 

  13. Rogalla P, Kloeters C, Hein PA (2009) CT technology overview: 64-slice and beyond. Radiol Clin North Am 47(1):1–11. doi:10.1016/j.rcl.2008.10.004

    Article  PubMed  Google Scholar 

  14. European Study Group of Radiologists and Physicists (1999) European guidelines on quality criteria for computed tomography. EUR 16262 EN

  15. Brooks RA, Di Chiro G (1976) Statistical limitations in X-ray reconstructive tomography. Med Phys 3(4):237–240

    Article  CAS  PubMed  Google Scholar 

  16. Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17(8):2028–2037

    Article  PubMed  Google Scholar 

  17. Rixe J, Conradi G, Rolf A et al (2009) Radiation dose exposure of computed tomography coronary angiography: comparison of dual-source, 16-slice and 64-slice CT. Heart 95(16):1337–1342. doi:10.1136/hrt.2008.161018

    Article  CAS  PubMed  Google Scholar 

  18. Steigner ML, Otero HJ, Cai T et al (2009) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25(1):85–90. doi:10.1007/s10554-008-9347-8

    Article  PubMed  Google Scholar 

  19. Deurenberg P, Weststrate JA, Seidell JC (1991) Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 65(2):105–114

    Article  CAS  PubMed  Google Scholar 

  20. Herzog BA, Husmann L, Valenta I et al (2009) Determinants of vessel contrast in BMI-adapted low dose CT coronary angiography with prospective ECG-triggering. Int J Cardiovasc Imaging 25(6):625–630. doi:10.1007/s10554-009-9460-3

    Article  PubMed  Google Scholar 

  21. Husmann L, Herzog BA, Burkhard N et al (2009) Low-dose coronary CT angiography with prospective ECG triggering: validation of a contrast material protocol adapted to body mass index. AJR Am J Roentgenol 193(3):802–806. doi:10.2214/AJR.08.2052

    Article  PubMed  Google Scholar 

  22. Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24(5):535–546. doi:10.1007/s10554-008-9308-2

    Article  PubMed  Google Scholar 

  23. Mayo JR, Leipsic JA (2009) Radiation dose in cardiac CT. AJR Am J Roentgenol 192(3):646–653

    Article  PubMed  Google Scholar 

  24. Feuchtner GM, Jodocy D, Klauser A et al. (2009) Radiation dose reduction by using 100-kV tube voltage in cardiac 64-slice computed tomography: a comparative study. Eur J Radiol. doi:10.1016/j.ejrad.2009.07.012

  25. Li X, Samei E, Segars WP, Sturgeon GM, Colsher JG, Frush DP (2008) Patient-specific dose estimation for pediatric chest CT. Med Phys 35(12):5821–5828

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Kandel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogalla, P., Blobel, J., Kandel, S. et al. Radiation dose optimisation in dynamic volume CT of the heart: tube current adaptation based on anterior–posterior chest diameter. Int J Cardiovasc Imaging 26, 933–940 (2010). https://doi.org/10.1007/s10554-010-9630-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-010-9630-3

Keywords

Navigation