Skip to main content

Advertisement

Log in

3-D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To present an efficient and robust method for 3-D reconstruction of the coronary artery tree from multiple ECG-gated views of an X-ray angiography. 2-D coronary artery centerlines are extracted automatically from X-ray projection images using an enhanced multi-scale analysis. For the difficult data with low vessel contrast, a semi-automatic tool based on fast marching method is implemented to allow manual correction of automatically-extracted 2-D centerlines. First, we formulate the 3-D symbolic reconstruction of coronary arteries from multiple views as an energy minimization problem incorporating a soft epipolar line constraint and a smoothness term evaluated in 3-D. The proposed formulation results in the robustness of the reconstruction to the imperfectness in 2-D centerline extraction, as well as the reconstructed coronary artery tree being inherently smooth in 3-D. We further propose to solve the energy minimization problem using α-expansion moves of Graph Cuts, a powerful optimization technique that yields a local minimum in a strong sense at a relatively low computational complexity. We show experimental results on a synthetic coronary phantom, a porcine data set and 11 patient data sets. For the coronary phantom, results obtained using different number of views are presented. 3-D reconstruction error evaluated by the mean plus one standard deviation is below one millimeter when 4 or more views are used. For real data, reconstruction using 4 to 5 views and 256 depth labels averaged around 12 s on a computer with 2.13 GHz Intel Pentium M and achieves a mean 2-D back-projection error of 1.18 mm (ranging from 0.84 to 1.71 mm) in 12 cases. The accuracy for multi-view reconstruction of the coronary artery tree as reported from the phantom and patient studies is promising, and the efficiency is significantly improved compared to other approaches reported in the literature, which range from a few to tens of minutes. Visually good and smooth reconstruction is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Heart disease and stroke statistics—2007 update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, Circulation 2006

  2. Green N, Chen S, Hansgen A, Messenger J, Groves B, Carroll J (2005) Angiographic views used for percutaneous coronary interventions: a three-dimensional analysis of physician-determined vs. computer-generated views. Catheterization and Cardiovascular Interventions 64:451–459

    Article  PubMed  Google Scholar 

  3. Wellnhofer E, Wahle A, Mugaragu I, Gross J, Oswald H, Fleck E (1999) Validation of an accurate method for three-dimensional reconstruction and quantitative assessment of volumes, lengths and diameters of coronary vascular branches and segments from biplane angiographic projections. Int J Card Imaging 15:339–353

    Article  CAS  PubMed  Google Scholar 

  4. Messenger J, Chen S, Carroll J, Burchenal J, Kioussopoulos K, Groves B (2000) 3-D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients. Int J Card Imaging 16:413–427

    Article  CAS  PubMed  Google Scholar 

  5. Gollapudi R, Valencia R, Lee S, Wong G, Teirstein P, Price M (2006) Utility of three-dimensional reconstruction of coronary angiography to guide percutaneous coronary intervention. Catheterization and Cardiovascular Interventions 69:479–482

    Article  Google Scholar 

  6. Schlundt C, Kreft J, Fuchs F, Achenbach S, Daniel W, Ludwig J (2006) Three-dimensional on-line reconstruction of coronary bifurcated lesions to optimize side-branch stenting. Catheterization and Cardiovascular Interventions 69:249–253

    Article  Google Scholar 

  7. Nguyen T, Sklansky J (1994) Reconstructing the 3-D medial axes of coronary arteries in single-view cineangiograms. IEEE Trans Med Imaging 13(1):61–73

    Article  CAS  PubMed  Google Scholar 

  8. Merle A et al (1998) 3D reconstruction of the deformable coronary tree skeleton from two X-ray angiographic views. Computers in Cardiology 25:757–760

    Google Scholar 

  9. Chen S, Carroll J (2000) 3-D reconstruction of coronary arterial tree to optimize angiographic visualization. IEEE Trans Med Imaging 19(4):318–336

    Article  CAS  PubMed  Google Scholar 

  10. Sprague K (2006) Coronary X-ray angiographic reconstruction and image orientation. Med Phys 3(3):707–718

    Article  Google Scholar 

  11. Andriotis A et al (2008) A new method of three-dimensional coronary artery reconstruction from X-ray angiography: validation against a virtual phantom and multislice computed tomography. Catheterization and Cardiovascular Interventions 71:28–43

    Article  PubMed  Google Scholar 

  12. Chen S et al (2003) Kinematic and deformation analysis of 4-D coronary arterial trees reconstructed from cine angiograms. IEEE Trans Med Imaging 22:710–721

    Article  PubMed  Google Scholar 

  13. Jandt U, Schafer D, Grass M, Rasche V (2009) Automatic generation of time resolved motion vector fields of coronary arteries and 4D surface extraction using rotational X-ray angiography. Phys Med Biol 54:45–64

    Article  PubMed  Google Scholar 

  14. Shechter G, Devernay F, Coste-Maniere E, Quyyumi A, McVeigh E (2003) Three-dimensional motion tracking of coronary arteries in biplane cineangiograms. IEEE Trans. Med. Imaging 22:493–503

    Article  PubMed  Google Scholar 

  15. Blondel C, Vaillant R, Malandain G, Ayache N (2004) 3D tomographic reconstruction of coronary arteries using a precomputed 4D motion field. Phys Med Biol 49:2197–2208

    Article  PubMed  Google Scholar 

  16. Blondel C et al (2006) Reconstruction of coronary arteries from a single rotational X-ray projection sequence. IEEE Trans Med Imaging 25(5):653–663

    Article  PubMed  Google Scholar 

  17. Hansis E, Schafer D, Dossel O, Grass M (2008) Projection-based motion compensation for gated coronary artery reconstruction from rotational X-ray angiograms. Phys Med Biol 53:3807–3820

    Article  CAS  PubMed  Google Scholar 

  18. Young S, Movassaghi B, Weese J, Rasche V (2003) 3D vessel axis extraction using 2D calibrated X-ray projections for coronary modeling. Proc. SPIE 5032:1491–1498

    Article  Google Scholar 

  19. Mourgues F, Devernay F (2001) 3D + t modeling of coronary artery tree from standard non simultaneous angiograms. LNCS 2208: 1320–1322 (MICCAI 2001)

    Google Scholar 

  20. Movassaghi B, Rasche V, Grass M, Viergever M, Niessen W (2004) A quantitative analysis of 3D coronary modeling from two or more projection images. IEEE Trans. Med. Imaging 23:1517–1531

    Article  CAS  PubMed  Google Scholar 

  21. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans PAMI 23(11):1222–1239

    Google Scholar 

  22. Kim J, Kolmogorov V, Zabih R (2003) Visual correspondence using energy minimization and mutual information. Proc Int Conf Comp Vis 1033–1040

  23. Kolmogorov V, Zabih R (2002) Multi-camera scene reconstruction via graph cuts. Proc. European Conf. Computer Vision 3:82–96

    Google Scholar 

  24. Kwatra V, Schodl A, Essa I, Turk G, Bobick A (2003) Graphcut textures: image and video synthesis using graph cuts. ACM Trans Graphics Proc SIGGRAPH 22(3):277–286

    Google Scholar 

  25. Lombaert H, Sun Y, Grady L, Xu C (2005) A multilevel banded graph cuts method for fast image segmentation. Proc Int Conf Comp Vis 259–265

  26. Funka-Lea G, Boykov Y, Florin C, Jolly M, Moreau-Gobard R, Ramaraj R, Rinck D (2006) Automatic heart isolation for CT coronary visualization using graph-cuts. Proc Int Symp Biomed Imaging 614–617

  27. Weickert J (1999) Coherence-enhancing diffusion filtering. Int. Journal of Computer Vision 31:111–127

    Article  Google Scholar 

  28. Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement filtering. Lect Notes Comput Sci 1496:130–137

    Article  Google Scholar 

  29. Palagyi K, Sorantin E, Balogh E, Kuba A, Halmai C, Erdohelyi B, Hausegger K (2001) A sequential 3D thinning algorithm and its medical applications. IPMI 409–415

  30. Mortensen E, Barrett W (1995) Intelligent scissors for image composition. ACM

  31. Sethian J (1998) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and material sciences. Cambridge

  32. Friedman J, Bentley J, Finkel R (1977) An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw 3(3):209–226

    Article  Google Scholar 

  33. For L, Fulkerson D (1962) Flows in networks. Princeton, Princeton Univ. Press

    Google Scholar 

  34. Grigoriev D, Karpinski M, Heide F, Smolensky R (1996) A lower bound for randomized algebraic decision trees. Proc ACM Symp Theory of Comput 612–619

  35. Kitamura K, Tobis J, Sklansky J (1988) Estimating the 3-D skeletons and transverse areas of coronary arteries from biplane angiograms. IEEE Trans. Med. Imaging 7:173–187

    Article  CAS  PubMed  Google Scholar 

  36. Van Tran L, Bahn R, Sklansky J (1992) Reconstructing the cross sections of coronary arteries from biplane angiograms. IEEE Trans. Med. Imaging 11:517–529

    Article  PubMed  Google Scholar 

  37. O’Donnell T, Funka-Lea G, Tek H, Jolly MP, Rasch M, Setser R (2006) Comprehensive cardiovascular image analysis using MR and CT at siemens corporate research. Int J Comput Vision 70(2):165–178

    Article  Google Scholar 

  38. Keating T, Wolf P, Scarpace F (1975) An improved method of digital image correlation. Photogrammetric Eng. Remote Sensing 41:993–1002

    Google Scholar 

  39. Klein J, Hoff J, Peifer J (1998) A quantitative evaluation of the three dimensional reconstruction of patients coronary arteries. Int J Card Imaging 14:75–87

    Article  CAS  PubMed  Google Scholar 

  40. Shechter G, Ozturk C, Resar J, Mcveigh E (2004) Respiratory motion of the heart from free breathing coronary angiograms. IEEE Trans Med Imaging 23(8):1046–1056

    Article  PubMed  Google Scholar 

  41. McLeish K, Hill D, Atkinson D, Blackall J, Razavi R (2002) A study of the motion and deformation of the heart due to respiration. IEEE Trans Med Imaging 21:1142–1150

    Article  PubMed  Google Scholar 

  42. Prummer M, Wigstrom L, Hornegger J, Boese J, Lauritsch G, Strobel N, Fahrig R (2006) Cardiac C-arm CT: efficient motion correction for 4D-FBP. IEEE Nuclear Sci Symp Conf Record pp 2620–2628

  43. Seifarth H, Wienbeck S, Püsken M, Juergens KU, Maintz D, Vahlhaus C, Heindel W, Fischbach R (2007) Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. American Journal of Roentgenology; 189:1317–1323

    Article  PubMed  Google Scholar 

  44. Hansis E, Schaefer D, Doessel O, Grass M (2008) Automatic optimum phase point selection based on centerline consistency for 3D rotational coronary angiography. Int J Comp Assisted Radiol Surg 355–361

Download references

Acknowledgments

The authors are thankful to Dr. Chenyang Xu, Dr. Guenter Lauritsch and Dr. Jan Boese for their generous support and enlightening discussions on this project, and are thankful to Prof. Patrick Serruys and Prof. Johannes Brachmann for providing the data in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Liao.

Appendix

Appendix

A. Coherence enhanced diffusion

For CED, The diffusion equation applied on the image I is given by:

$$ \partial_{t} I(x,t) = \nabla \cdot (D(\nabla I(x,t))), $$
(7)

where \( \nabla \cdot \) is the divergence operator, \( D \) is a diffusion tensor that depends on local image structures so that not only the amount, but also the direction of the diffusion can be regulated. Let \( K_{\sigma } \) be the Gaussian kernel:

$$ K_{\sigma } (x) = {\frac{1}{{2\pi \sigma^{2} }}}e^{{ - {\frac{{\left| x \right|^{2} }}{{2\sigma^{2} }}}}} $$
(8)

and \( I_{\sigma } \) be the convolving result of \( I \) with \( K_{\sigma } \): \( I_{\sigma } (x,t) = K_{\sigma } * I(x,t) \).

The structure tensor \( J_{\rho } \) is defined as the convolving result of gradient tensor product with \( K_{\rho } \):

$$ J_{\rho } (\nabla I_{\sigma } ) = K_{\rho } * (\nabla I_{\sigma } \otimes \nabla I_{\sigma } ) . $$
(9)

\( J_{\rho } \) has the eigenvalues \( \mu_{1} \) and \( \mu_{2} \), and the corresponding eigenvectors \( w_{1} \) and \( w_{2} \). The coherence-enhancing anisotropic diffusion tensor D is structured to have the same eigenvectors as \( J_{\rho } \), but with customized eigenvalues \( \lambda_{1} \) and \( \lambda_{2} \),

$$ D = \left( {w_{1} |w_{2} } \right)\left( {\begin{array}{*{20}c} {\lambda_{1} } & 0 \\ 0 & {\lambda_{2} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {w_{1}^{T} } \\ {w_{2}^{T} } \\ \end{array} } \right) $$
(10)

where

$$ \begin{aligned} \lambda_{1} &=& \kappa \\ \lambda_{2} &=& \kappa + (1 - \kappa )e^{{{\frac{ - 1}{{(\mu_{1} - \mu_{2} )^{2} }}}}} \\ \end{aligned} $$
(11)

with \( \kappa \in (0,1) \). The diffusion process acts preferably along \( w_{2} \) direction of the highest coherence within the scale \( \rho \). \( \sigma = 1.0 \), \( \rho = 4.0 \), \( \kappa = 0.001 \), \( t = 3 \) are adopted in our algorithm.

B. Multi-scale hessian-based vesselness filtering

The MSHBVF is defined as:

$$ F(u) = \max\nolimits_{\varepsilon } f(u,\varepsilon ) $$
(12)

where f is the filter at scale ɛ. The filter response is calculated for different scales and the maximal response is used as the final vesselness result. The filter calculates 2nd-order derivatives to build the Hessian matrix:

$$ \user2{H}_{\varepsilon } = \varepsilon^{2} \left[ \begin{gathered} \begin{array}{*{20}c} {{\frac{{\partial^{2} {\mathbf{u}}_{\varepsilon } }}{{\partial x^{2} }}}} & {{\frac{{\partial^{2} {\mathbf{u}}_{\varepsilon } }}{\partial x\,\partial y}}} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {{\frac{{\partial^{2} {\mathbf{u}}_{\varepsilon } }}{\partial x\,\partial y}}} & {{\frac{{\partial^{2} {\mathbf{u}}_{\varepsilon } }}{{\partial y^{2} }}}} \\ \end{array} \hfill \\ \end{gathered} \right]. $$
(13)

Here \( {\mathbf{u}}_{\varepsilon } \) is the convolution of the CED preprocessed image with a Gaussian kernel of size ε corresponding to the radius of the vessel of interest. Based on the hypotheses that the dark tubular structures on the bright background have the eigenvalues \( \nu_{1} \approx 0 \), \( \nu_{2} > 0 \), and \( |\nu_{1} | \ll |\nu_{2} | \), the vesselness strength is calculated as [28]:

$$ V_{\varepsilon } = \left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {e^{{{{ - R_{B}^{2} } \mathord{\left/ {\vphantom {{ - R_{B}^{2} } {2\beta^{2} }}} \right. \kern-\nulldelimiterspace} {2\beta^{2} }}}} (1 - e^{{{{ - S^{2} } \mathord{\left/ {\vphantom {{ - S^{2} } {2\gamma^{2} }}} \right. \kern-\nulldelimiterspace} {2\gamma^{2} }}}} )} \\ \end{array} } & {\begin{array}{*{20}c} {\nu_{2} \le 0} \\ {\nu_{2} > 0} \\ \end{array} } \\ \end{array} } \right\} $$
(14)

where \( R_{B} = \nu_{1} /\nu_{2} \) to enhance the tubular structure, \( S = \sqrt {\nu_{1}^{2} + \nu_{2}^{2} } \) to suppress the background noise, and the vesselness orientation is calculated as the eigenvector corresponding to \( \nu_{1} \). Here β and γ control the sensitivity of the filter and are set to 1 and 3, respectively in our algorithm.

C. α-Expansion move of graph-cuts optimization

GCs optimization using α-expansion move is based on computing a labeling corresponding to a minimum cut on a graph \( g_{\alpha } = \left\langle {V_{\alpha } ,E_{\alpha } } \right\rangle \). The structure of the graph is determined by the current partition and by the current label α. The set of vertices:

$$ V_{\alpha } = \left\{ {\alpha ,\bar{\alpha },P,\mathop \cup \limits_{\begin{subarray}{l} \{ p,q\} \in N \\ f_{p} \ne f_{q} \end{subarray} } a_{{\{ p,q\} }} } \right\} , $$
(15)

includes two terminals α and \( \bar{\alpha } \), the centerline pixels P, and the auxiliary nodes \( a_{{\{ p,q\} }} \) between neighboring centerline pixels p and q such that \( f_{p} \ne f_{q} \). Each centerline pixel \( p \in P \) is connected to the terminals α and \( \bar{\alpha } \) by t-links \( t_{p}^{\alpha } \) and \( t_{p}^{{\bar{\alpha }}} \), respectively. Each pair of neighboring centerline pixels \( \{ p,q\} \in N \) with \( f_{p} = f_{q} \) is connected by an n-link \( e_{{\{ p,q\} }} \). For each pair of neighboring centerline pixels \( \{ p,q\} \in N \) with \( f_{p} \ne f_{q} \), a triplet edges \( E_{{\{ p,q\} }} = \{ e_{{\{ p,a\} }} ,e_{{\{ a,q\} }} ,t_{a}^{{\bar{\alpha }}} \} \) are created, where \( a = a_{{\{ p,q\} }} \) is the auxiliary node, \( e_{{\{ p,a\} }} \) and \( e_{{\{ a,q\} }} \) connect pixels p and q and the t-link \( t_{a}^{{\bar{\alpha }}} \) connects the auxiliary node \( a_{{\{ p,q\} }} \) to the terminal \( \bar{\alpha } \). So all the edges are:

$$ E_{\alpha } = \left\{ {\mathop \cup \limits_{p \in P} \left\{ {t_{p}^{\alpha } ,t_{p}^{{\bar{\alpha }}} } \right\},\mathop \cup \limits_{\begin{subarray}{l} \left\{ {p,q} \right\} \in N \\ f_{{p \ne f_{q} }} \end{subarray} } E_{{\{ p,q\} }} ,\mathop \cup \limits_{\begin{subarray}{l} \left\{ {p,q} \right\} \in N \\ f_{{p = f_{q} }} \end{subarray} } e_{{\{ p,q\} }} } \right\}. $$
(16)

Please refer to [21] for the weights assigned to the edges. After partition, the global solution of one α-expansion move is as follows: a centerline pixel p is assigned the label α if the cut seperates p from the terminal α, and p retains its old label if the cut separates p from the terminal \( \bar{\alpha } \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, R., Luc, D., Sun, Y. et al. 3-D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography. Int J Cardiovasc Imaging 26, 733–749 (2010). https://doi.org/10.1007/s10554-009-9528-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9528-0

Keywords

Navigation