Skip to main content
Log in

31P cardiac magnetic resonance spectroscopy during leg exercise at 3 Tesla

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Investigation of phosphorus (31P) magnetic resonance spectroscopy under stress conditions provides a non-invasive tool to examine alterations in cardiac high-energy phosphate metabolism that may not be evident at rest. Our aim was to establish cardiac 31P MR spectroscopy during leg exercise at 3T. The increased field strength should provide a higher signal to noise ratio than at lower field strengths. Furthermore, relatively high temporal resolution at a sufficiently fine spatial resolution should be feasible. 31P MR spectra were obtained with a 3D acquisition weighted chemical shift imaging sequence in 20 healthy volunteers at rest, during dynamic physiological leg exercise and after recovery at 3T. Haemodynamic measurements were made throughout and the rate pressure product calculated. With exercise, the mean heart rate increased by 73%, achieving a mean increase in rate pressure product of 115%. The corrected PCr/ATP ratio for subjects at rest was 2.02 ± 0.43, exercise 2.14 ± 0.67 (P = 0.54 vs. rest) and at recovery 2.03 ± 0.52 (P = 0.91 vs. rest, P = 0.62 vs. exercise). A cardiac 31P MR spectroscopy physiological exercise-recovery protocol is feasible at 3T. There was no significant change in high-energy cardiac phosphate metabolite concentrations in healthy volunteers at rest, during physiological leg exercise or during recovery. When applied to patients with heart disease, this protocol should provide insights into physiological and pathological cardiac metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Neubauer S, Krahe T, Schindler R et al (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86(6):1810–1818

    CAS  PubMed  Google Scholar 

  2. Scheuermann-Freestone M, Madsen PL, Manners D et al (2003) Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107(24):3040–3046

    Article  CAS  PubMed  Google Scholar 

  3. Lamb HJ, Beyerbacht HP, van der Laarse A et al (1999) Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. Circulation 99(17):2261–2267

    CAS  PubMed  Google Scholar 

  4. Crilley JG, Boehm EA, Blair E et al (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41(10):1776–1782

    Article  CAS  PubMed  Google Scholar 

  5. Neubauer S, Horn M, Cramer M et al (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96(7):2190–2196

    CAS  PubMed  Google Scholar 

  6. Beyerbacht HP, Lamb HJ, van Der Laarse A et al (2001) Aortic valve replacement in patients with aortic valve stenosis improves myocardial metabolism and diastolic function. Radiology 219(3):637–643

    CAS  PubMed  Google Scholar 

  7. Hart PE, Lodi R, Rajagopalan B et al (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 62(4):621–626

    Article  PubMed  Google Scholar 

  8. Beer M, Wagner D, Myers J et al (2008) Effects of exercise training on myocardial energy metabolism and ventricular function assessed by quantitative phosphorus-31 magnetic resonance spectroscopy and magnetic resonance imaging in dilated cardiomyopathy. J Am Coll Cardiol 51(19):1883–1891. doi:10.1016/j.jacc.2007.09.075

    Article  PubMed  Google Scholar 

  9. Bache RJ, Zhang J, Path G et al (1994) High-energy phosphate responses to tachycardia and inotropic stimulation in left ventricular hypertrophy. Am J Physiol 266(5 Pt 2):H1959–H1970

    CAS  PubMed  Google Scholar 

  10. Weiss RG, Bottomley PA, Hardy CJ et al (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 323(23):1593–1600

    Article  CAS  PubMed  Google Scholar 

  11. Kuno S, Ogawa T, Katsuta S et al (1994) In vivo human myocardial metabolism during aerobic exercise by phosphorus-31 nuclear magnetic resonance spectroscopy. Eur J Appl Physiol Occup Physiol 69(6):488–491

    Article  CAS  PubMed  Google Scholar 

  12. Buchthal SD, den Hollander JA, Merz CN et al (2000) Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Engl J Med 342(12):829–835

    Article  CAS  PubMed  Google Scholar 

  13. Pluim BM, Lamb HJ, Kayser HW et al (1998) Functional and metabolic evaluation of the athlete’s heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation 97(7):666–672

    CAS  PubMed  Google Scholar 

  14. Yabe T, Mitsunami K, Okada M et al (1994) Detection of myocardial ischemia by 31P magnetic resonance spectroscopy during handgrip exercise. Circulation 89(4):1709–1716

    CAS  PubMed  Google Scholar 

  15. Evanochko WT, Buchthal SD, den Hollander JA et al (2002) Cardiac transplant patients response to the (31)P MRS stress test. J Heart Lung Transplant 21(5):522–529

    Article  PubMed  Google Scholar 

  16. Lamb HJ, Beyerbacht HP, Ouwerkerk R et al (1997) Metabolic response of normal human myocardium to high-dose atropine-dobutamine stress studied by 31P-MRS. Circulation 96(9):2969–2977

    CAS  PubMed  Google Scholar 

  17. Schaefer S, Schwartz GG, Steinman SK et al (1992) Metabolic response of the human heart to inotropic stimulation: in vivo phosphorus-31 studies of normal and cardiomyopathic myocardium. Magn Reson Med 25(2):260–272

    Article  CAS  PubMed  Google Scholar 

  18. Tsutsui JM, Elhendy A, Xie F et al (2005) Safety of dobutamine stress real-time myocardial contrast echocardiography. J Am Coll Cardiol 45(8):1235–1242

    Article  CAS  PubMed  Google Scholar 

  19. Conway MA, Bristow JD, Blackledge MJ et al (1991) Cardiac metabolism during exercise in healthy volunteers measured by 31P magnetic resonance spectroscopy. Br Heart J 65(1):25–30

    Article  CAS  PubMed  Google Scholar 

  20. Conway MA, Bristow JD, Blackledge MJ et al (1988) Cardiac metabolism during exercise measured by magnetic resonance spectroscopy. Lancet 2(8612):692

    Article  CAS  PubMed  Google Scholar 

  21. Hetherington HP, Luney DJ, Vaughan JT et al (1995) 3D 31P spectroscopic imaging of the human heart at 4.1T. Magn Reson Med 33(3):427–431

    Article  CAS  PubMed  Google Scholar 

  22. Menon RS, Hendrich K, Hu X et al (1992) 31P NMR spectroscopy of the human heart at 4T: detection of substantially uncontaminated cardiac spectra and differentiation of subepicardium and subendocardium. Magn Reson Med 26(2):368–376

    Article  CAS  PubMed  Google Scholar 

  23. Tyler DJ, Hudsmith LE, Clarke K et al. (2008) A comparison of cardiac (31)P MRS at 1.5 and 3T. NMR Biomed. doi: 10.1002/nbm.1255

  24. Tyler DJ, Emmanuel Y, Cochlin LE et al. (2008) Reproducibility of (31)P cardiac magnetic resonance spectroscopy at 3T. NMR Biomed. doi: 10.1002/nbm.1350

  25. Bottomley PA, Hardy CJ (1992) Mapping of creatine kinase reaction rates in human brain and heart with 4 Tesla saturation transfer 31P NMR. J Magn Reson 99(2):443–448

    CAS  Google Scholar 

  26. Poldermans D, Fioretti PM, Boersma E et al (1994) Safety of dobutamine-atropine stress echocardiography in patients with suspected or proven coronary artery disease. Am J Cardiol 73(7):456–459

    Article  CAS  PubMed  Google Scholar 

  27. Navare SM, Katten D, Johnson LL et al (2006) Risk stratification with electrocardiographic-gated dobutamine stress technetium-99 m sestamibi single-photon emission tomographic imaging: value of heart rate response and assessment of left ventricular function. J Am Coll Cardiol 47(4):781–788

    Article  PubMed  Google Scholar 

  28. Gobel FL, Norstrom LA, Nelson RR et al (1978) The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 57(3):549–556

    CAS  PubMed  Google Scholar 

  29. Naressi A, Couturier C, Castang I et al (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31(4):269–286

    Article  CAS  PubMed  Google Scholar 

  30. Tyler DJ, Hudsmith LE, Neubauer S, Clarke K, Robson MD (2006) Comparison of Cardiac Phosphorus Spectroscopy at 1.5T and 3T. ISMRM, Seattle, USA. John Wiley and Sons

    Google Scholar 

  31. Bottomley PA, Ouwerkerk R (1994) Optimum flip-angles for exciting NMR with uncertain T1 values. Magn Reson Med 32(1):137–141

    Article  CAS  PubMed  Google Scholar 

  32. Wikman-Coffelt J, Sievers R, Coffelt RJ et al (1983) The cardiac cycle: regulation and energy oscillations. Am J Physiol 245(2):H354–H362

    CAS  PubMed  Google Scholar 

  33. Sundstedt M, Jonason T, Ahren T et al (2003) Left ventricular volume changes during supine exercise in young endurance athletes. Acta Physiol Scand 177(4):467–472

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from The Medical Research Council (DJT, MDR, SN), The British Heart Foundation (LEH, DJT, YE, SEP, MDR, HW, KC, SN) and The Wellcome Trust (SN, MDR). This work was supported by the Oxford Partnership Comprehensive Biomedical Research Centre with funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Neubauer.

Additional information

Lucy E. Hudsmith and Damian J. Tyler contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudsmith, L.E., Tyler, D.J., Emmanuel, Y. et al. 31P cardiac magnetic resonance spectroscopy during leg exercise at 3 Tesla. Int J Cardiovasc Imaging 25, 819–826 (2009). https://doi.org/10.1007/s10554-009-9492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9492-8

Keywords

Navigation