Skip to main content
Log in

Age and gender related reference values for transthoracic Doppler-echocardiography in the anesthetized CD1 mouse

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Objective: Doppler-echocardiography of the mouse has evolved to a commonly used technique in the past years as recent advances in imaging quality have substantially improved spatial and temporal resolution allowing the adaptation of this technique to murine models. Although mouse echocardiography is widely used, there is only little information on reference data for wild-type animals available, particularly in older mice.

Methods: We therefore established a database with echocardiographic reference-values in a large set of young (8 weeks) and older adult (52 weeks) Swiss type CD1-mice of either sex. We performed a complete Doppler-echocardiographic examination under light Ketamine-Xylazine-anesthesia. LV-mass was calculated and compared with necropsy heart weights to validate the LV-mass calculation.

Results: Doppler-echocardiographic measurements in mice were feasible to assess cardiac morphology and function. Sonomorphological and functional parameters hardly changed between the age of 12 and 52 weeks. Wall thickness, LV-mass and cardiac output were stable with aging. There was a good relative correlation between echocardiographically estimated LV-mass and necropsy heart weight although absolute values differed. There were no significant echocardiographic differences between male and female mice.

Conclusions: The reference values established in this study can be useful in recording and quantifying pathological changes in murine models of cardiovascular diseases. There is hardly any change of cardiac function between the age of 12 and 52 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ao maxPG:

Maximal pressure gradient aortic valve

AoVmax:

Maximal flow velocity aortic valve

AW:

Anterior wall of the LV

A-wave:

Maximum late flow velocity mitral valve

BW:

Body weight

CI:

Cardiac index

CO:

Cardiac output

E-wave:

Maximum early flow velocity mitral valve

FS:

Fractional shortening

HW:

Heart weight

LA:

Left atrium

LV:

Left ventricle

LV-EF:

LV ejection fraction

LVET:

LV ejection time

LVEDD:

LV end diastolic diameter

LVESD:

LV end systolic diameter

LVM:

LV mass

LVM-I:

LV mass-index

LVOT:

Left ventricular outflow tract

MV:

MaxPG maximal pressure gradient mitral valve

PW:

Posterior wall of the LV

References

  1. Collins KA, Korcarz CE, Lang RM (2003). Use of echocardiography for the phenotypic assessment of genetically altered mice. Physiol Genomics 13(3): 227–239

    PubMed  Google Scholar 

  2. Fentzke RC et al., (1997). Evaluation of ventricular and arterial hemodynamics in anesthetized closed-chest mice. J Am Soc Echocardiogr 10(9): 915–925

    Article  PubMed  CAS  Google Scholar 

  3. Sahn DJ et al., (1978). Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 58(6): 1072–1083

    PubMed  CAS  Google Scholar 

  4. Kiatchoosakun S et al., (2002). Assessment of left ventricular mass in mice: comparison between two-dimensional and M-mode echocardiography. Echocardiography 19(3): 199–205

    Article  PubMed  Google Scholar 

  5. Collins KA et al., (2001) Accuracy of echocardiographic estimates of left ventricular mass in mice. Am J Physiol Heart Circ Physiol, 280(5): H1954–H1962

    PubMed  CAS  Google Scholar 

  6. Youn HJ et al., (1999). Two-dimensional echocardiography with a 15-MHz transducer is a promising alternative for in vivo measurement of left ventricular mass in mice. J Am Soc Echocardiogr 12(1): 70–75

    Article  PubMed  CAS  Google Scholar 

  7. Tiemann K et al., (2003). Increasing myocardial contraction and blood pressure in C57BL/6 mice during early postnatal development. Am J Physiol Heart Circ Physiol 284(2): H464–H474

    PubMed  CAS  Google Scholar 

  8. Yang XP et al., (1999). Echocardiographic assessment of cardiac function in conscious and anesthetized mice. Am J Physiol 277(5 Pt 2): H1967–H1974

    PubMed  CAS  Google Scholar 

  9. Strauch OF et al., (2003). Cardiac and ocular pathologies in a mouse model of mucopolysaccharidosis type VI. Pediatr Res 54(5): 701–708

    Article  PubMed  CAS  Google Scholar 

  10. Thomas JD (1998). The DICOM image formatting standard: its role in echocardiography and angiography. Int J Card Imaging 14(Suppl 1): 1–6

    Article  PubMed  Google Scholar 

  11. Du XJ, et al., (2000). Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart. Cardiovasc Res 48(3): 448–454

    Article  PubMed  CAS  Google Scholar 

  12. Roth DM et al., (2002). Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol, 282(6): H2134–H2140

    PubMed  CAS  Google Scholar 

  13. Hart CY, Burnett JC, Jr, Redfield MM (2001) Effects of avertin versus xylazine-ketamine anesthesia on cardiac function in normal mice. Am J Physiol Heart Circ Physiol 281(5): H1938–H1945

    PubMed  CAS  Google Scholar 

  14. Desai KH et al., (1997). Cardiovascular indexes in the mouse at rest and with exercise: new tools to study models of cardiac disease. Am J Physiol 272(2 Pt 2): H1053–H1061

    PubMed  CAS  Google Scholar 

  15. Fatkin D et al., (2000). An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J Clin Invest 106(11): 1351–1359

    Article  PubMed  CAS  Google Scholar 

  16. McConnell BK et al., (2001). Comparison of two murine models of familial hypertrophic cardiomyopathy. Circ Res 88(4): 383–389

    PubMed  CAS  Google Scholar 

  17. Stypmann J et al., (2002). Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci USA 99(9): 6234–6239

    Article  PubMed  CAS  Google Scholar 

  18. Li YY et al., (2000). Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 97(23): 12746–12751

    Article  PubMed  CAS  Google Scholar 

  19. Hoit BD et al., (2002). Naturally occurring variation in cardiovascular traits among inbred mouse strains. Genomics 79(5): 679–685

    Article  PubMed  CAS  Google Scholar 

  20. Ghanem A, et al. Echocardiographic assessment of left ventricular mass in mice – Accuracy of different echocardiographic methods. Echocardiography, in press.

  21. D’Angelo DD et al., (1997) Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA, 94(15): 8121–8126

    Article  PubMed  CAS  Google Scholar 

  22. Vatner DE et al., (2000) Determinants of the cardiomyopathic phenotype in chimeric mice overexpressing cardiac Gsalpha. Circ Res 86(7): 802–806

    PubMed  CAS  Google Scholar 

  23. Harada K et al., (1998). Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 97(19): 1952–1959

    PubMed  CAS  Google Scholar 

  24. Hoit BD et al., (1997) In vivo determination of left ventricular wall stress-shortening relationship in normal mice. Am J Physiol 272(2 Pt 2): H1047–H1052

    PubMed  CAS  Google Scholar 

  25. Taffet GE et al., (1996) Noninvasive indexes of cardiac systolic and diastolic function in hyperthyroid and senescent mouse. Am J Physiol 270(6 Pt 2): H2204–H2209

    PubMed  CAS  Google Scholar 

  26. Oberst L et al., (1998) Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. J Clin Invest 102(8): 1498–1505

    Article  PubMed  CAS  Google Scholar 

  27. Lewis JF, Maron BJ (1992) Cardiovascular consequences of the aging process. Cardiovasc Clin 22(2): 25–34

    PubMed  CAS  Google Scholar 

  28. Shioi T et al., (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. Embo J 19(11): 2537–2548

    Article  PubMed  CAS  Google Scholar 

  29. Iwase M et al., (1997) Cardiomyopathy induced by cardiac Gs alpha overexpression. Am J Physiol, 272(1 Pt 2): H585–H589

    PubMed  CAS  Google Scholar 

  30. Zvaritch E et al., (2000) The transgenic expression of highly inhibitory monomeric forms of phospholamban in mouse heart impairs cardiac contractility. J Biol Chem 275(20): 14985–14991

    Article  PubMed  CAS  Google Scholar 

  31. Williams RV et al., (1998) End-systolic stress-velocity and pressure-dimension relationships by transthoracic echocardiography in mice. Am J Physiol, 274(5 Pt 2): H1828–H1835

    PubMed  CAS  Google Scholar 

  32. Schmidt AG et al., (2000). Cardiac-specific overexpression of calsequestrin results in left ventricular hypertrophy, depressed force-frequency relation and pulsus alternans in vivo. J Mol Cell Cardiol 32(9): 1735–1744

    Article  PubMed  CAS  Google Scholar 

  33. Fentzke RC et al., (2001) The left ventricular stress-velocity relation in transgenic mice expressing a dominant negative CREB transgene in the heart. J Am Soc Echocardiogr 14(3): 209–218

    Article  PubMed  CAS  Google Scholar 

  34. Manning WJ et al., (1994) In vivo assessment of LV mass in mice using high-frequency cardiac ultrasound: necropsy validation. Am J Physiol 266(4 Pt 2): H1672–H1675

    PubMed  CAS  Google Scholar 

  35. Fard A et al., (2000). Noninvasive assessment and necropsy validation of changes in left ventricular mass in ascending aortic banded mice. J Am Soc Echocardiogr 13(6): 582–587

    Article  PubMed  CAS  Google Scholar 

  36. Liao Y et al. (2002) Echocardiographic assessment of LV hypertrophy and function in aortic-banded mice: necropsy validation. Am J Physiol Heart Circ Physiol 282(5): H1703–H1708

    PubMed  CAS  Google Scholar 

  37. Esposito G et al., (2000) Cellular and functional defects in a mouse model of heart failure. Am J Physiol Heart Circ Physiol, 279(6): H3101–H3112

    PubMed  CAS  Google Scholar 

  38. Semeniuk LM, Kryski AJ, Severson DL (2002) Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol 283(3): H976–H982

    PubMed  CAS  Google Scholar 

  39. Bruch C et al., (1999) Tissue Doppler imaging (TDI) for on-line detection of regional early diastolic ventricular asynchrony in patients with coronary artery disease. Int J Card Imaging 15(5): 379–390

    Article  PubMed  CAS  Google Scholar 

  40. Slotwiner DJ et al., (1998). Relation of age to left ventricular function in clinically normal adults. Am J Cardiol 82(5): 621–626

    Article  PubMed  CAS  Google Scholar 

  41. Aessopos A et al., (2004). Cardiovascular adaptation to chronic anemia in the elderly: an echocardiographic study. Clin Invest Med 27(5): 265–273

    PubMed  Google Scholar 

  42. Lakatta EG (1990). Changes in cardiovascular function with aging. Eur Heart J, 11(Suppl C): 22–29

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

*Jörg Stypmann, Markus A. Engelen contributed equally to this work. ** Parts of these data are part of C. Epping’s doctoral thesis.

Address for correspondence: Dr. med. Jörg Stypmann, Medizinische Klinik und Poliklinik C, Kardiologie und Angiologie, Universitätsklinikum Münster, Albert-Schweitzer-Str. 33, D-48149 Münster, Germany Tel.: +49-251-83-47617; Fax: +49-251-83-47684; E-mail: stypmann@mednet.uni-muenster.de

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stypmann, J., Engelen, M.A., Epping, C. et al. Age and gender related reference values for transthoracic Doppler-echocardiography in the anesthetized CD1 mouse. Int J Cardiovasc Imaging 22, 353–362 (2006). https://doi.org/10.1007/s10554-005-9052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-005-9052-9

Keywords

Navigation