Skip to main content
Log in

Prevalence of cervical human papillomavirus in Mexico, 2010–2017: analysis of 2.7 million women

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Prevalence of cervical high-risk human papillomavirus (hrHPV) infection varies greatly. Data on distribution of hrHPV infection constitute important evidence for decision-making when implementing HPV testing into cervical cancer screening programs. We estimate the prevalence of cervical hrHPV infection in a large sample of women in a middle-income country and explore variation by age, community marginalization and region in women using public cervical cancer screening services.

Methods

Records covering 2010–2017 from a registry of hrHPV test results (Hybrid Capture 2 and polymerase chain reaction) in 2,737,022 women 35–64 years were analyzed. In this observational study, 32 states were categorized into five geographical regions and classified by degree of marginalization. We stratified by test type and estimated crude and adjusted prevalence and rate ratios and used Poisson models and joinpoint regression analysis.

Results

Prevalence was higher in women 35–39 years, at 10.4% (95% CI 10.3–10.5) and women 60–64 years, at 10.1% (95% CI 10.0–10.3). Prevalence was higher in the southeast, at 10.5% (95% CI 10.4–10.6). Women living in less marginalized areas had a significantly higher prevalence, at 10.3% (95% CI 10.2–10.4) compared to those in highly marginalized areas, at 8.7% (95% CI 8.5–8.7). HPV16 infection was detected in 0.92% (2,293/23,854) of women and HPV18 infection was detected in 0.39% (978/23,854) of women.

Conclusion

Understanding the distribution of HPV prevalence has value as evidence for developing policy in order to improve cervical cancer screening strategies. These results will constitute evidence to allow decision makers to better choose where to focus those resources that they do have.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Anonymized data that are minimally required to replicate the outcomes of the study will be made available upon reasonable request to the corresponding author, and following approval by the participating sites.

References

  1. de Sanjosé S et al (2007) Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect Dis 7:453–459. https://doi.org/10.1016/S1473-3099(07)70158-5

    Article  Google Scholar 

  2. Bruni L, Diaz M, Castellsagué X, Ferrer E, Bosch FX, De Sanjosé S (2010) Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis 202(12):1789. https://doi.org/10.1086/657321

    Article  Google Scholar 

  3. Sharma M et al (2013) Using HPV prevalence to predict cervical cancer incidence. Int J Cancer 132(8):1895–1900. https://doi.org/10.1002/ijc.27835

    Article  CAS  Google Scholar 

  4. de Sanjosé S et al (2012) Human papillomavirus (HPV) and related cancers in the global alliance for vaccines and immunization (GAVI) countries. A WHO/ICO HPV information centre report. Vaccine. https://doi.org/10.1016/S0264-410X(12)01435-1

    Article  Google Scholar 

  5. Gravitt PE (2011) The known unknowns of HPV natural history. J Clin Invest 121(12):4593–4599. https://doi.org/10.1172/JCI57149

    Article  CAS  Google Scholar 

  6. Serrano B, Brotons M, Bosch FX, Bruni L (2018) Epidemiology and burden of HPV-related disease. Best Pract Res Clin Obstet Gynaecol 47:14–26. https://doi.org/10.1016/j.bpobgyn.2017.08.006

    Article  Google Scholar 

  7. Gravitt PE et al (2013) A cohort effect of the sexual revolution may be masking an increase in human papillomavirus detection at menopause in the United States. J Infect Dis 207(2):272–280. https://doi.org/10.1093/infdis/jis660

    Article  Google Scholar 

  8. Dong L et al (2017) Risk prediction of cervical cancer and precancers by type-specific human papillomavirus: evidence from a population-based cohort study in China. Cancer Prev Res 10(12):745–751. https://doi.org/10.1158/1940-6207.CAPR-17-0088

    Article  Google Scholar 

  9. Trottier H et al (2010) Human papillomavirus infection and reinfection in adult women: the role of sexual activity and natural immunity. Cancer Res 70(21):8569–8577. https://doi.org/10.1158/0008-5472.CAN-10-0621

    Article  CAS  Google Scholar 

  10. Allen-Leigh B et al (2020) Uptake of the HPV vaccine among people with and without HIV, cisgender and transgender women and men who have sex with men and with women at two sexual health clinics in Mexico city. Hum Vaccines Immunother 16(4):981. https://doi.org/10.1080/21645515.2019.1675456

    Article  Google Scholar 

  11. Salmerón J et al (2003) Comparison of HPV-based assays with papanicolaou smears for cervical cancer screening in Morelos state, Mexico. Cancer Causes Control 14(6):505–512. https://doi.org/10.1023/A:1024806707399

    Article  Google Scholar 

  12. Rudolph SE et al (2016) Population-based prevalence of cervical infection with human papillomavirus genotypes 16 and 18 and other high risk types in Tlaxcala, Mexico. BMC Infect Dis. https://doi.org/10.1186/s12879-016-1782-x

    Article  Google Scholar 

  13. Franceschi S et al (2006) Variations in the age-specific curves of human papillomavirus prevalence in women worldwide. Int J Cancer 119(11):2677–2684. https://doi.org/10.1002/ijc.22241

    Article  CAS  Google Scholar 

  14. Franco EL (2018) Prevention of cervical cancer in Latin America: future challenges and opportunities. Salud Publica Mex 60(6):609. https://doi.org/10.21149/10071

    Article  Google Scholar 

  15. Wright TC et al (2006) Chapter 30: HPV vaccines and screening in the prevention of cervical cancer; conclusions from a 2006 workshop of international experts. Vaccine 24(3):S251–S261. https://doi.org/10.1016/j.vaccine.2006.06.064

    Article  Google Scholar 

  16. Wentzensen N et al (2017) Eurogin 2016 roadmap: how HPV knowledge is changing screening practice. Int J Cancer 140(10):2192–2200. https://doi.org/10.1002/ijc.30579

    Article  CAS  Google Scholar 

  17. OPS/OMS México - Sistemas y Servicios de Salud. https://www.paho.org/mex/index.php?option=com_content&view=article&id=354:sistemas-servicios-salud&Itemid=387. Accessed 25 Apr 2020

  18. Hurtado-Salgado E et al (2018) Use of HPV testing in cervical cancer screening services in Mexico, 2008–2018: a nationwide database study. Salud Publica Mex 60(6):2008–2018

    Article  Google Scholar 

  19. N. C. for C. D. P. and H. P. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Registry Plus Link Plus Features and Future Plans | CDC (2015) https://www.cdc.gov/cancer/npcr/tools/registryplus/lp_features.htm. Accessed 17 Mar 2020

  20. Lörincz AT (1996) Hybrid capture™ method for detection of human papillomavirus DNA in clinical specimens: a tool for clinical management of equivocal pap smears and for population screening. J Obstet Gynaecol Res 22(6):629–636. https://doi.org/10.1111/j.1447-0756.1996.tb01081.x

    Article  Google Scholar 

  21. Heideman DAM et al (2011) Clinical validation of the cobas 4800 HPV test for cervical screening purposes. J Clin Microbiol 49(11):3983–3985. https://doi.org/10.1128/JCM.05552-11

    Article  CAS  Google Scholar 

  22. Consejo Nacional de Población (CONAPO) (2010) Indices de marginación por entidad federativa y municipio. Íindices De Marginación, pp 18–73

  23. INEGI 2000, “Regiones Socioeconómicas de México,” (2000) http://sc.inegi.gob.mx/niveles/index.jsp. Accessed 20 Nov 2018

  24. Salinas-Rodríguez A, Manrique-Espinoza B, Sosa-Rubí SG Análisis estadístico para datos de conteo: aplicaciones para el uso de los servicios de salud

  25. Diaz-Quijano FA, Forma Regresiones aplicadas al estudio de eventos discretos en epidemiología Rev d ela Univ Ind Santander. https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/5397/5646. Accessed 25 Apr 2020

  26. Kim HJ, Fay MP, Feuer EJ, Midthune DN (2000) Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 19(3):335–351

    Article  CAS  Google Scholar 

  27. López-Revilla R, Martínez-Contreras LA, Sánchez-Garza M (2008) Prevalence of high-risk human papillomavirus types in Mexican women with cervical intraepithelial neoplasia and invasive carcinoma. Infect Agent Cancer 3(1):3. https://doi.org/10.1186/1750-9378-3-3

    Article  Google Scholar 

  28. Lazcano-Ponce E et al (2001) Epidemiology of HPV infection among Mexican women with normal cervical cytology. Int J Cancer 91(3):412–420. https://doi.org/10.1002/1097-0215(20010201)91:3%3c412::AID-IJC1071%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  29. Flores Y et al (2002) Design and methods of the evaluation of an HPV-based cervical cancer screening strategy in Mexico: the Morelos HPV study. Salud Publica Mex 44(4):335–344. https://doi.org/10.1590/S0036-36342002000400007

    Article  Google Scholar 

  30. Velázquez-Márquez N, Paredes-Tello MA, Pérez-Terrón H, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V (2009) Prevalence of human papillomavirus genotypes in women from a rural region of Puebla, Mexico. Int J Infect Dis 13(6):690–695. https://doi.org/10.1016/j.ijid.2008.10.010

    Article  Google Scholar 

  31. Herrero R et al (2005) Epidemiologic profile of type-specific human papillomavirus infection and cervical neoplasia in Guanacaste, Costa Rica. J Infect Dis 191(11):1796–1807. https://doi.org/10.1086/428850

    Article  Google Scholar 

  32. Torres-Ibarra L et al (2016) Triage strategies in cervical cancer detection in Mexico: methods of the FRIDA study. Salud Publica Mex 58(2):197–210. https://doi.org/10.21149/spm.v58i2.7789

    Article  Google Scholar 

  33. Gravitt PE, Winer RL (2017) Natural history of HPV infection across the lifespan: role of viral latency. Viruses. https://doi.org/10.3390/v9100267

    Article  Google Scholar 

  34. González P et al (2010) Behavioral/lifestyle and immunologic factors associated with HPV infection among women older than 45 years. Cancer Epidemiol Biomark Prev 19(12):3044–3054. https://doi.org/10.1158/1055-9965.EPI-10-0645

    Article  Google Scholar 

  35. Herrero R et al (2000) Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J Natl Cancer Inst 92(6):464–474

    Article  CAS  Google Scholar 

  36. Castle PE et al (2005) A prospective study of age trends in cervical human papillomavirus acquisition and persistence in Guanacaste, Costa Rica. J Infect Dis 191(11):1808–1816. https://doi.org/10.1086/428779

    Article  Google Scholar 

  37. Clarke M et al (2001) A prospective study of absolute risk and determinants of human papillomavirus incidence among young women in Costa Rica. BMC Infect Dis 13(1):2013. https://doi.org/10.1186/1471-2334-13-308

    Article  Google Scholar 

  38. Giuliano AR et al (2001) Human papillomavirus infection at the United States-Mexico border. Cancer Epidemiol Prev Biomark 10(11):1129–1136

    CAS  Google Scholar 

  39. Marks MA et al (2015) Prevalence and correlates of HPV among women attending family-planning clinics in Thailand. BMC Infect Dis. https://doi.org/10.1186/s12879-015-0886-z

    Article  Google Scholar 

  40. Lazcano-Ponce EC, Moss S, De Ruíz PA, Castro JS, Avila MH (1999) Cervical cancer screening in developing countries: why is it ineffective? The case of Mexico. Arch Med Res 30(3):240–250. https://doi.org/10.1016/S0188-0128(99)00006-8

    Article  CAS  Google Scholar 

  41. Lazcano-Ponce EC et al (1997) The cervical cancer screening program in Mexico: problems with access and coverage. Cancer Causes Control. https://doi.org/10.1023/A:1018471102911

    Article  Google Scholar 

  42. Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. Lancet 393(10167):169–182. https://doi.org/10.1016/S0140-6736(18)32470-X

    Article  Google Scholar 

  43. Zhu B et al (2019) The prevalence, trends, and geographical distribution of human papillomavirus infection in China: the pooled analysis of 1.7 million women. Cancer Med 8(11):5373–5385. https://doi.org/10.1002/cam4.2017

    Article  CAS  Google Scholar 

  44. Mendoza EM, López MFH, Clavero CIGS, Carcaño FJ, Ascencio RL, Mori ES (2016) Situación de la Salud Sexual y Reproductiva. Mexico CDMX. http://www.gob.mx/conapo. Accessed 13 Jan 2020

  45. Villalobos A, Allen B, La Vara ED, De Castro F (2012) Uso de anticoncepcion y planificacion familiar entre mujeres adolescentes y adultas: cerrando la brecha entre metas y realidades. Instituto Nacional de Salud Pública 5:41–56

    Google Scholar 

  46. Ryser MD, Rositch A, Gravitt PE (2017) Modeling of US human papillomavirus (HPV) seroprevalence by age and sexual behavior indicates an increasing trend of HPV infection following the sexual revolution. J Infect Dis 216(5):604–611. https://doi.org/10.1093/infdis/jix333

    Article  Google Scholar 

  47. Allen-Leigh B et al (2017) Barriers to HPV self-sampling and cytology among low-income indigenous women in rural areas of a middle-income setting: a qualitative study. BMC Cancer 17(1):734. https://doi.org/10.1186/s12885-017-3723-5

    Article  Google Scholar 

  48. Koliopoulos G et al (2017) Cytology versus HPV testing for cervical cancer screening in the general population. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008587.pub2

    Article  Google Scholar 

  49. Hirth J (2019) Disparities in HPV vaccination rates and HPV prevalence in the United States: a review of the literature. Hum Vaccines Immunother 15(1):146–155. https://doi.org/10.1080/21645515.2018.1512453

    Article  Google Scholar 

  50. Rositch AF, Burke AE, Viscidi RP, Silver MI, Chang K, Gravitt PE (2012) Contributions of recent and past sexual partnerships on incident human papillomavirus detection: acquisition and reactivation in older women. Cancer Res 72(23):6183–6190. https://doi.org/10.1158/0008-5472.CAN-12-2635

    Article  CAS  Google Scholar 

  51. Bosch FX et al (2016) HPV-FASTER: broadening the scope for prevention of HPV-related cancer. Nat Rev Clin Oncol 13(2):119–132. https://doi.org/10.1038/nrclinonc.2015.146

    Article  CAS  Google Scholar 

  52. Tsu VD, Njama-Meya D, Lim J, Murray M, de Sanjose S (2018) Opportunities and challenges for introducing HPV testing for cervical cancer screening in sub-Saharan Africa. Prev Med 114:205–208. https://doi.org/10.1016/j.ypmed.2018.07.012

    Article  Google Scholar 

  53. León-Maldonado L et al (2019) Feasibility of a combined strategy of HPV vaccination and screening in Mexico: the faster-Tlalpan study experience. Hum Vaccines Immunother 15(7–8):1986–1994. https://doi.org/10.1080/21645515.2019.1619401

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Lazcano-Ponce.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest. Only Dr. Franco reports grants and personal fees from Merck, outside the submitted work; In addition, Dr. Franco has a patent Methylation markers in cervical cancer pending.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 288 kb)

Supplementary file2 (JPG 281 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado-Salgado, E., Ortiz-Panozo, E., Salmerón, J. et al. Prevalence of cervical human papillomavirus in Mexico, 2010–2017: analysis of 2.7 million women. Cancer Causes Control 34, 123–132 (2023). https://doi.org/10.1007/s10552-022-01642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-022-01642-2

Keywords

Navigation