Skip to main content

Advertisement

Log in

Blood plasma derived extracellular vesicles (BEVs): particle purification liquid chromatography (PPLC) and proteomic analysis reveals BEVs as a potential minimally invasive tool for predicting response to breast cancer treatment

  • Brief Communication
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Circulating blood plasma derived extracellular vesicles (BEVs) containing proteins hold promise for their use as minimally invasive biomarkers for predicting response to cancer therapy. The main goal of this study was to establish the efficiency and utility of the particle purification liquid chromatography (PPLC) BEV isolation method and evaluate the role of BEVs in predicting breast cancer (BC) patient response to neoadjuvant chemotherapy (NAC).

Methods

PPLC isolation was used to separate BEVs from non-EV contaminants and characterize BEVs from 17 BC patients scheduled to receive NAC. Using LC–MS/MS, we compared the proteome of PPLC-isolated BEVs from patients (n = 7) that achieved a pathological complete response (pCR) after NAC (responders [R]) to patients (n = 10) who did not achieve pCR (non-responders [NR]). Luminal MCF7 and basaloid MDA-MB-231 BC cells were treated with isolated BEVs and evaluated for metabolic activity by MTT assay.

Results

NR had elevated BEV concentrations and negative zeta potential (ζ-potential) prior to receipt of NAC. Eight proteins were enriched in BEVs of NR. GP1BA (CD42b), PECAM-1 (CD31), CAPN1, HSPB1 (HSP27), and ANXA5 were validated using western blot. MTT assay revealed BEVs from R and NR patients increased metabolic activity of MCF7 and MDA-MB-231 BC cells and the magnitude was highest in MCF7s treated with NR BEVs.

Conclusion

PPLC-based EV isolation provides a preanalytical separation process for BEVs devoid of most contaminants. Our findings suggest that PPLC-isolated BEVs and the five associated proteins may be established as predictors of chemoresistance, and thus serve to identify NR to spare them the toxic effects of NAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Spectral counts and precursor abundances dataset with peptide spectrum match annotations are attached to this manuscript as additional files.

References

  1. Kaddour H, Lyu Y, Shouman N, Mohan M, Okeoma CM (2020) Development of novel high-resolution size-guided turbidimetry-enabled particle purification liquid chromatography (PPLC): extracellular vesicles and membraneless condensates in focus. Int J Mol Sci. 21(15):5361

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaddour H, Lyu Y, Welch JL, Paromov V, Mandape SN, Sakhare SS, Pandhare J, Stapleton JT, Pratap S, Dash C et al (2020) Proteomics profiling of autologous blood and semen exosomes from HIV-infected and uninfected individuals reveals compositional and functional variabilities. Mol Cell Proteom. 19(1):78–100

    Article  CAS  Google Scholar 

  3. Kaddour H, Panzner TD, Welch JL, Shouman N, Mohan M, Stapleton JT, Okeoma CM (2020) Electrostatic surface properties of blood and semen extracellular vesicles: implications of sialylation and HIV-induced changes on EV internalization. Viruses. 12(10):1117

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lyu Y, Kaddour H, Kopcho S, Panzner TD, Shouman N, Kim EY, Martinson J, McKay H, Martinez-Maza O, Margolick JB et al (2019) Human Immunodeficiency Virus (HIV) infection and use of illicit substances promote secretion of semen exosomes that enhance monocyte adhesion and induce actin reorganization and chemotactic migration. Cells. 8(9):1027

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lyu Y, Kopcho S, Mohan M, Okeoma CM (2020) long-term low-dose delta-9-tetrahydrocannbinol (THC) administration to simian immunodeficiency virus (SIV) infected rhesus macaques stimulates the release of bioactive blood extracellular vesicles (EVs) that induce divergent structural adaptations and signaling cues. Cells. 9(10):2243

    Article  PubMed  PubMed Central  Google Scholar 

  6. Madison MN, Jones PH, Okeoma CM (2015) Exosomes in human semen restrict HIV-1 transmission by vaginal cells and block intravaginal replication of LP-BM5 murine AIDS virus complex. Virology. 482:189–201

    Article  CAS  PubMed  Google Scholar 

  7. Madison MN, Okeoma CM (2015) Exosomes: implications in HIV-1 pathogenesis. Viruses 7(7):4093–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Madison MN, Roller RJ, Okeoma CM (2014) Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology 11:102

    Article  PubMed  PubMed Central  Google Scholar 

  9. Madison MN, Welch JL, Okeoma CM (2017) Isolation of exosomes from semen for in vitro uptake and HIV-1 infection assays. Bio-Protoc. 7(7): e2216

    Article  PubMed  PubMed Central  Google Scholar 

  10. Welch JL, Kaddour H, Schlievert PM, Stapleton JT, Okeoma CM (2018). Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry. J Virol. 92(21):e00731-18

    Article  PubMed  PubMed Central  Google Scholar 

  11. Welch JL, Kaddour H, Winchester L, Fletcher CV, Stapleton JT, Okeoma CM (2020) Semen extracellular vesicles from HIV-1-infected individuals inhibit HIV-1 replication in vitro, and extracellular vesicles carry antiretroviral drugs in vivo. J Acquir Immune Defic Syndr. 83(1):90–98

    Article  CAS  Google Scholar 

  12. Welch JL, Kaufman TM, Stapleton JT, Okeoma CM (2020) Semen exosomes inhibit HIV infection and HIV-induced proinflammatory cytokine production independent of the activation state of primary lymphocytes. FEBS Lett. 594(4):695–709

    Article  CAS  PubMed  Google Scholar 

  13. Welch JL, Madison MN, Margolick JB, Galvin S, Gupta P, Martinez-Maza O, Dash C, Okeoma CM (2017) Effect of prolonged freezing of semen on exosome recovery and biologic activity. Sci Rep. 7:45034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Welch JL, Stapleton JT, Okeoma CM (2019) Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol. 100(3):350-366

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anfossi S, Babayan A, Pantel K, Calin GA (2018) Clinical utility of circulating non-coding RNAs—an update. Nat Rev Clin Oncol 15(9):541–563

    Article  PubMed  Google Scholar 

  16. Batagov AO, Kurochkin IV (2013) Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct 8:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin Y, Chen K, Wang Z, Wang Y, Liu J, Lin L, Shao Y, Gao L, Yin H, Cui C et al (2016) DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer 16(1):753

    Article  PubMed  PubMed Central  Google Scholar 

  18. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M et al (2014) Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 42(11):7290–7304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee H, Castro CM (2019) Thermophoretically enriched detection. Nat Biomed Eng 3(3):163–164

    Article  PubMed  Google Scholar 

  21. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    Article  PubMed  Google Scholar 

  22. Liu C, Xu X, Li B, Situ B, Pan W, Hu Y, An T, Yao S, Zheng L (2018) Single-Exosome-counting immunoassays for cancer diagnostics. Nano Lett 18(7):4226–4232

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Wang H, Zhao G, Li N, Wang X, Li Y, Jia Y, Qiao X (2021) Anti-Tim4 grafting strongly hydrophilic metal-organic frameworks immunoaffinity flake for high-efficiency capture and separation of exosomes. Anal Chem 93(16):6534–6543

    Article  CAS  PubMed  Google Scholar 

  24. Yang L, Yin X, An B, Li F (2021) Precise capture and direct quantification of tumor exosomes via a highly efficient dual-aptamer recognition-assisted ratiometric immobilization-free electrochemical strategy. Anal Chem 93(3):1709–1716

    Article  CAS  PubMed  Google Scholar 

  25. Huang M, Yang J, Wang T, Song J, Xia J, Wu L, Wang W, Wu Q, Zhu Z, Song Y et al (2020) Homogeneous, low-volume, efficient, and sensitive quantitation of circulating exosomal PD-L1 for cancer diagnosis and immunotherapy response prediction. Angew Chem Int Ed Engl 59(12):4800–4805

    Article  CAS  PubMed  Google Scholar 

  26. Zhu L, Xu Y, Wei X, Lin H, Huang M, Lin B, Song Y, Yang C (2021) Coupling aptamer-based protein tagging with metabolic glycan labeling for in situ visualization and biological function study of exosomal protein-specific glycosylation. Angew Chem Int Ed Engl 60(33):18111–18115

    Article  CAS  PubMed  Google Scholar 

  27. Zhang P, Zhou X, Zeng Y (2019) Multiplexed immunophenotyping of circulating exosomes on nano-engineered ExoProfile chip towards early diagnosis of cancer. Chem Sci 10(21):5495–5504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. György B, Pálóczi K, Kovács A, Barabás E, Bekő G, Várnai K, Pállinger É, Szabó-Taylor K, Szabó TG, Kiss AA et al (2014) Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thromb Res 133(2):285–292

    Article  PubMed  Google Scholar 

  29. Cvjetkovic A, Lötvall J, Lässer C (2014) The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ding L, Liu LE, He L, Effah CY, Yang R, Ouyang D, Jian N, Liu X, Wu Y, Qu L (2021) Magnetic-Nanowaxberry-Based simultaneous detection of exosome and exosomal proteins for the intelligent diagnosis of cancer. Anal Chem. 93, 45, 15200–15208

    Article  PubMed  PubMed Central  Google Scholar 

  31. Perales S, Torres C, Jimenez-Luna C, Prados J, Martinez-Galan J, Sanchez-Manas JM, Caba O (2021) Liquid biopsy approach to pancreatic cancer. World J Gastrointest Oncol 13(10):1263–1287

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun Y, Jin J, Jing H, Lu Y, Zhu Q, Shu C, Zhang Q, Jing D (2021) ITIH4 is a novel serum biomarker for early gastric cancer diagnosis. Clin Chim Acta 523:365–373

    Article  CAS  PubMed  Google Scholar 

  33. Wang DD, Qian XK, Li HX, Jia GH, Jin Q, Luan X, Zhu YD, Wang YN, Huang J, Zou LW et al (2021) Sensing and imaging of exosomal CD26 secreted from cancer cells and 3D colorectal tumor model using a novel near-infrared fluorogenic probe. Mater Sci Eng C 130:112472

    Article  CAS  Google Scholar 

  34. Yu C, Li L, Liu L, Wang Z, Zhu J (2021) Research of exosome in bone metastasis through dual aptamer recognition based entropy-driven amplification. Anal Biochem. 636:114433

    Article  PubMed  Google Scholar 

  35. Zhang Y, Wang Y, Su X, Wang P, Lin W (2021) The value of circulating circular RNA in cancer diagnosis, monitoring, prognosis, and guiding treatment. Front Oncol 11:736546

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhao X, Guo X, Jiao D, Zhu J, Xiao H, Yang Y, Zhao S, Zhang J, Jiao F, Liu Z (2021) Analysis of the expression profile of serum exosomal lncRNA in breast cancer patients. Ann Transl Med 9(17):1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bobrie A, Colombo M, Krumeich S, Raposo G, Théry C (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP (2018) Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int 2018:8545347

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods (San Diego, Calif) 56(2):293–304

    Article  CAS  Google Scholar 

  40. Livshits MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, Semina SE, Generozov EV, Govorun VM (2015) Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep 5(1):17319

    Article  PubMed  Google Scholar 

  41. Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M (2018) Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev 128:84–100

    Article  CAS  PubMed  Google Scholar 

  42. Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng IT, Shi M et al (2017) Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 11(4):3943–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Shang H, Ma C, Chen L (2021) A fluorescence assay for exosome detection based on bivalent cholesterol anchor triggered target conversion and enzyme-free signal amplification. Anal Chem 93(24):8493–8500

    Article  CAS  PubMed  Google Scholar 

  44. Yuana Y, Levels J, Grootemaat A, Sturk A, Nieuwland R (2014) Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J Extracell Vesicles. 3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang A, Chan Miller C, Szostak JW (2019) Core-shell modeling of light scattering by vesicles: effect of size, contents, and lamellarity. Biophys J 116(4):659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zougman A, Wilson JP, Banks RE (2020) A simple serum depletion method for proteomics analysis. Biotechniques 69(2):148–151

    Article  CAS  PubMed  Google Scholar 

  47. Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn’s diagrams. [https://bioinfogp.cnb.csic.es/tools/venny/index.html]

  48. Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44(W1):W147-153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43(W1):W566–W570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P et al (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605-d612

    Article  CAS  PubMed  Google Scholar 

  51. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B (2019) WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res 47(W1):W199–W205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feingold KR (2000): Introduction to lipids and lipoproteins. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Hershman JM, Hofland J, Kalra S et al (Eds). South Dartmouth (MA): MDText.com, Inc. Copyright © 2000–2021, MDText.com, Inc.; Endotext. edn.

  53. Woods D, Turchi JJ (2013) Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol Ther 14(5):379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3(4):294–300

    Article  CAS  PubMed  Google Scholar 

  55. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15(1):171–182

    Article  CAS  PubMed  Google Scholar 

  56. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10(2):86–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gibert B, Hadchity E, Czekalla A, Aloy MT, Colas P, Rodriguez-Lafrasse C, Arrigo AP, Diaz-Latoud C (2011) Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene 30(34):3672–3681

    Article  CAS  PubMed  Google Scholar 

  58. Gibert B, Eckel B, Gonin V, Goldschneider D, Fombonne J, Deux B, Mehlen P, Arrigo AP, Clézardin P, Diaz-Latoud C (2012) Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br J Cancer 107(1):63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hansen RK, Parra I, Lemieux P, Oesterreich S, Hilsenbeck SG, Fuqua SAW (1999) Hsp27 overexpression inhibits doxorubicin–induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56(2):185–194

    Article  Google Scholar 

  60. Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR (1998) Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79(5):468–475

    Article  CAS  PubMed  Google Scholar 

  61. Simonsen JB (2017) What are we looking at? Extracellular vesicles, lipoproteins, or both? Circ Res 121(8):920–922

    Article  CAS  PubMed  Google Scholar 

  62. Moman RN, Varacallo M (2019) Physiology, Albumin. StatPearls Publishing, Treasure Island

    Google Scholar 

  63. Ahmed N, Barker G, Oliva K, Garfin D, Talmadge K, Georgiou H, Quinn M, Rice G (2003) An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics 3(10):1980–1987

    Article  CAS  PubMed  Google Scholar 

  64. Fu Q, Garnham CP, Elliott ST, Bovenkamp DE, Van Eyk JE (2005) A robust, streamlined, and reproducible method for proteomic analysis of serum by delipidation, albumin and IgG depletion, and two-dimensional gel electrophoresis. Proteomics 5(10):2656–2664

    Article  CAS  PubMed  Google Scholar 

  65. Steel LF, Trotter MG, Nakajima PB, Mattu TS, Gonye G, Block T (2003) Efficient and specific removal of albumin from human serum samples. Mol Cell Proteom 2(4):262–270

    Article  CAS  Google Scholar 

  66. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523(7559):177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Konig L, Kasimir-Bauer S, Bittner AK, Hoffmann O, Wagner B, Santos Manvailer LF, Kimmig R, Horn PA, Rebmann V (2017) Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. Oncoimmunology 7(1):e1376153

    Article  PubMed  PubMed Central  Google Scholar 

  68. Midekessa G, Godakumara K, Ord J, Viil J, Lättekivi F, Dissanayake K, Kopanchuk S, Rinken A, Andronowska A, Bhattacharjee S et al (2020) Zeta potential of extracellular vesicles: toward understanding the attributes that determine colloidal stability. ACS Omega 5(27):16701–16710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bæk R, Søndergaard EK, Varming K, Jørgensen MM (2016) The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Methods 438:11–20

    Article  PubMed  Google Scholar 

  70. Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(1):105–113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute on Drug Abuse (NIDA), grants DA042348, DA050169, and DA053643 to CMO. This work was partially supported by the Scholars in Biomedical Sciences T32GM127253 award to FAA. This work was supported, in part, by the Stony Brook University Advanced Energy Research and Technology Center and Proteomics Core, and Iowa Hybridoma Bank. We thank the patients for donating blood. We particularly thank Dr. John Haley, the director of the Stony Brook University Proteomics Core.

Funding

This work received support from National Institute on Drug Abuse (NIDA) to Chioma M Okeoma (Grants, DA042348, DA050169, and DA053643). This work was also supported by a Stony Brook University start-up fund granted to Chioma M Okeoma. 

Author information

Authors and Affiliations

Authors

Contributions

CMO, PT, FAA: Conceptualization; CMO, PT, FAA, HK, YL, CP: Methodology; FAA, HK: Validation; CMO, PT, FAA, HK, YL, CP: Formal Analysis; CMO, PT, FAA, HK, YL, CP: Investigation; CMO, PT: Resources; JC, LB, ATS: Recruitment; FAA, HK, YL, CP: Data Curation; CMO, PT, FAA, HK, JC, LB, ATS, YL CP: Writing—Original Draft Preparation; FAA, CMO, PT, HK: Writing—Review & Editing; CMO,PT: Supervision; CMO: Project Administration; CMO, PT: Funding Acquisition. All authors participated in manuscript preparation and approved the final version of the manuscript.

Corresponding author

Correspondence to Chioma M. Okeoma.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

This study was conducted according to university regulations approved by Stony Brook University Institutional Review Boards (IRB # 860033).

Consent to participate

Individuals who met the inclusion and exhibit none of the exclusion criteria and who gave written informed consent were included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, F.A., Kaddour, H., Lyu, Y. et al. Blood plasma derived extracellular vesicles (BEVs): particle purification liquid chromatography (PPLC) and proteomic analysis reveals BEVs as a potential minimally invasive tool for predicting response to breast cancer treatment. Breast Cancer Res Treat 196, 423–437 (2022). https://doi.org/10.1007/s10549-022-06733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06733-x

Keywords

Navigation