Skip to main content

Advertisement

Log in

LCCC 1025: a phase II study of everolimus, trastuzumab, and vinorelbine to treat progressive HER2-positive breast cancer brain metastases

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

HER2 + breast cancer (BC) is an aggressive subtype with high rates of brain metastases (BCBM). Two-thirds of HER2 + BCBM demonstrate activation of the PI3K/mTOR pathway driving resistance to anti-HER2 therapy. This phase II study evaluated everolimus (E), a brain-permeable mTOR inhibitor, trastuzumab (T), and vinorelbine (V) in patients with HER2 + BCBM.

Patients and methods

Eligible patients had progressive HER2 + BCBM. The primary endpoint was intracranial response rate (RR); secondary objectives were CNS clinical benefit rate (CBR), extracranial RR, time to progression (TTP), overall survival (OS), and targeted sequencing of tumors from enrolled patients. A two-stage design distinguished intracranial RR of 5% versus 20%.

Results

32 patients were evaluable for toxicity, 26 for efficacy. Intracranial RR was 4% (1 PR). CNS CBR at 6 mos was 27%; at 3 mos 65%. Median intracranial TTP was 3.9 mos (95% CI 2.2–5). OS was 12.2 mos (95% CI 0.6–20.2). Grade 3–4 toxicities included neutropenia (41%), anemia (16%), and stomatitis (16%). Mutations in TP53 and PIK3CA were common in BCBM. Mutations in the PI3K/mTOR pathway were not associated with response. ERBB2 amplification was higher in BCBM compared to primary BC; ERBB2 amplification in the primary BC trended toward worse OS.

Conclusion

While intracranial RR to ETV was low in HER2 + BCBM patients, one-third achieved CNS CBR; TTP/OS was similar to historical control. No new toxicity signals were observed. Further analysis of the genomic underpinnings of BCBM to identify tractable prognostic and/or predictive biomarkers is warranted. Clinical Trial: (NCT01305941).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study will be made available in the dbGAP repository.

References

  1. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JMS, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF, American Society of Clinical Oncology, College of American Pathologists (2014) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med 138:241–256. https://doi.org/10.5858/arpa.2013-0953-SA

    Article  PubMed  Google Scholar 

  2. Bendell JC, Domchek SM, Burstein HJ, Harris L, Younger J, Kuter I, Bunnell C, Rue M, Gelman R, Winer E (2003) Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 97:2972–2977. https://doi.org/10.1002/cncr.11436

    Article  PubMed  Google Scholar 

  3. Gril B, Palmieri D, Bronder JL, Herring JM, Vega-Valle E, Feigenbaum L, Liewehr DJ, Steinberg SM, Merino MJ, Rubin SD, Steeg PS (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. JNCI J Natl Cancer Inst 100:1092–1103. https://doi.org/10.1093/jnci/djn216

    Article  PubMed  CAS  Google Scholar 

  4. Swain SM, Baselga J, Miles D, Im Y-H, Quah C, Lee LF, Cortés J (2014) Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA. Ann Oncol 25:1116–1121. https://doi.org/10.1093/annonc/mdu133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Niwinska A, Murawska M, Pogoda K (2010) Breast cancer brain metastases: differences in survival depending on biological subtype, RPA RTOG prognostic class and systemic treatment after whole-brain radiotherapy (WBRT). Ann Oncol 21:942–948. https://doi.org/10.1093/annonc/mdp407

    Article  PubMed  CAS  Google Scholar 

  6. Niwinska A, Murawska M, Pogoda K (2010) Breast cancer subtypes and response to systemic treatment after whole-brain radiotherapy in patients with brain metastases. Cancer 116:4238–4247. https://doi.org/10.1002/cncr.25391

    Article  PubMed  Google Scholar 

  7. Mounsey LA, Deal AM, Keith KC, Benbow JM, Shachar SS, Zagar T, Dees EC, Carey LA, Ewend MG, Anders CK (2017) Changing natural history of HER2–Positive breast cancer metastatic to the brain in the era of new targeted therapies. Clin Breast Cancer.

    Article  PubMed  Google Scholar 

  8. Zagar TM, Van Swearingen AED, Kaidar-Person O, Ewend MG, Anders CK (2016) Multidisciplinary management of breast cancer brain metastases. Oncology 30:923–933

    PubMed  Google Scholar 

  9. Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, Roche H, Liu MC, Greil R, Ciruelos E, Loibl S, Gori S, Wardley A, Yardley D, Brufsky A, Blum JL, Rubin SD, Dharan B, Steplewski K, Zembryki D, Oliva C, Roychowdhury D, Paoletti P, Winer EP (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15:1452–1459. https://doi.org/10.1158/1078-0432.CCR-08-1080

    Article  PubMed  CAS  Google Scholar 

  10. Bachelot T, Romieu G, Campone M, Diéras V, Cropet C, Dalenc F, Jimenez M, Le Rhun E, Pierga J-Y, Gonçalves A, Leheurteur M, Domont J, Gutierrez M, Curé H, Ferrero J-M, Labbe-Devilliers C (2013) Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol 14:64–71. https://doi.org/10.1016/S1470-2045(12)70432-1

    Article  PubMed  CAS  Google Scholar 

  11. Keith KC, Lee Y, Ewend MG, Zagar TM, Anders CK (2016) Activity of Trastuzumab-Emtansine (Tdm1) in Her2-positive breast cancer brain metastases: a case series. Cancer Treat Commun 7:43–46. https://doi.org/10.1016/j.ctrc.2016.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kalsi R, Feigenberg S, Kwok Y, Tkaczuk K, Mehta M, Chumsri S (2015) Brain metastasis and response to ado-trastuzumab emtansine: a case report and literature review. Clin Breast Cancer 15:e163-6. https://doi.org/10.1016/j.clbc.2014.10.003

    Article  PubMed  Google Scholar 

  13. Wilks ST (2015) Potential of overcoming resistance to HER2-targeted therapies through the PI3K/Akt/mTOR pathway. Breast 24:548–555. https://doi.org/10.1016/j.breast.2015.06.002

    Article  PubMed  Google Scholar 

  14. André F, O’Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G, Masuda N, Wilks S, Arena F, Isaacs C, Yap Y-S, Papai Z, Lang I, Armstrong A, Lerzo G, White M, Shen K, Litton J, Chen D, Zhang Y, Ali S, Taran T, Gianni L (2014) Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15:580–591. https://doi.org/10.1016/S1470-2045(14)70138-X

    Article  PubMed  CAS  Google Scholar 

  15. Gallardo A, Lerma E, Escuin D, Tibau A, Muñoz J, Ojeda B, Barnadas A, Adrover E, Sánchez-Tejada L, Giner D, Ortiz-Martínez F, Peiró G (2012) Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer 106:1367–1373. https://doi.org/10.1038/bjc.2012.85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wikman H, Lamszus K, Detels N, Uslar L, Wrage M, Benner C, Hohensee I, Ylstra B, Eylmann K, Zapatka M, Sauter G, Kemming D, Glatzel M, Müller V, Westphal M, Pantel K (2012) Relevance of PTEN loss in brain metastasis formation in breast cancer patients. Breast Cancer Res BCR 14:R49. https://doi.org/10.1186/bcr3150

    Article  PubMed  CAS  Google Scholar 

  17. Jing J, Greshock J, Holbrook JD, Gilmartin A, Zhang X, McNeil E, Conway T, Moy C, Laquerre S, Bachman K, Wooster R, Degenhardt Y (2012) Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212. Mol Cancer Ther 11:720–729. https://doi.org/10.1158/1535-7163.MCT-11-0505

    Article  PubMed  CAS  Google Scholar 

  18. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang W-C, Li P, Li M, Wang X, Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100–104. https://doi.org/10.1038/nature15376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Adamo B, Deal AM, Burrows E, Geradts J, Hamilton E, Blackwell KL, Livasy C, Fritchie K, Prat A, Harrell JC, Ewend MG, Carey LA, Miller CR, Anders CK (2011) Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases. Breast Cancer Res 13:R125. https://doi.org/10.1186/bcr3071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, Witt O, Kohrman MH, Flamini JR, Wu JY, Curatolo P, de Vries PJ, Whittemore VH, Thiele EA, Ford JP, Shah G, Cauwel H, Lebwohl D, Sahmoud T, Jozwiak S (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381:125–132. https://doi.org/10.1016/S0140-6736(12)61134-9

    Article  PubMed  CAS  Google Scholar 

  21. Lin NU, Carey LA, Liu MC, Younger J, Come SE, Ewend M, Harris GJ, Bullitt E, Van den Abbeele AD, Henson JW, Li X, Gelman R, Burstein HJ, Kasparian E, Kirsch DG, Crawford A, Hochberg F, Winer EP (2008) Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 26:1993–1999. https://doi.org/10.1200/JCO.2007.12.3588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Macdonald DR, Cascino TL, Schold SC, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280. https://doi.org/10.1200/JCO.1990.8.7.1277

    Article  PubMed  CAS  Google Scholar 

  23. National Cancer Institute (2009) Common Terminology Criteria for Adverse Events v 4.0. Available from https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf

  24. Zhao X, Wang A, Walter V, Patel NM, Eberhard DA, Hayward MC, Salazar AH, Jo H, Soloway MG, Wilkerson MD, Parker JS, Yin X, Zhang G, Siegel MB, Rosson GB, Earp HS, Sharpless NE, Gulley ML, Weck KE, Hayes DN, Moschos SJ (2015) Combined targeted DNA sequencing in non-small cell lung cancer (NSCLC) using UNCseq and NGScopy, and RNA sequencing using UNCqeR for the detection of genetic aberrations in NSCLC. PLoS ONE 10:e0129280. https://doi.org/10.1371/journal.pone.0129280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026

    Article  PubMed  CAS  Google Scholar 

  26. Brady MJ, Cella DF, Mo F, Bonomi AE, Tulsky DS, Lloyd SR, Deasy S, Cobleigh M, Shiomoto G (1997) Reliability and validity of the functional assessment of cancer therapy-breast quality-of-life instrument. J Clin Oncol 15:974–986. https://doi.org/10.1200/JCO.1997.15.3.974

    Article  PubMed  CAS  Google Scholar 

  27. Weitzner MA, Meyers CA, Gelke CK, Byrne KS, Cella DF, Levin VA (1995) The functional assessment of cancer therapy (FACT) scale. Development of a brain subscale and revalidation of the general version (FACT-G) in patients with primary brain tumors. Cancer 75:1151–1161

    Article  PubMed  CAS  Google Scholar 

  28. Cella DF, Tulsky DS, Gray G, Sarafian B, Linn E, Bonomi A, Silberman M, Yellen SB, Winicour P, Brannon J (1993) The functional assessment of cancer therapy scale: development and validation of the general measure. J Clin Oncol 11:570–579. https://doi.org/10.1200/JCO.1993.11.3.570

    Article  PubMed  CAS  Google Scholar 

  29. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tischler G, Leonard S (2014) biobambam: tools for read pair collation based algorithms on BAM files. Source Code Biol Med 9:13. https://doi.org/10.1186/1751-0473-9-13

    Article  PubMed Central  Google Scholar 

  32. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mose LE, Wilkerson MD, Hayes DN, Perou CM, Parker JS (2014) ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics 30:2813–2815. https://doi.org/10.1093/bioinformatics/btu376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Picard. In: Picard. http://broadinstitute.github.io/picard. Accessed 9 Nov 2017

  35. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. ArXiv12073907 Q-Bio

  36. Baier H, Schultz J (2014) ISAAC - InterSpecies Analysing Application using Containers. BMC Bioinform 15:18. https://doi.org/10.1186/1471-2105-15-18

    Article  CAS  Google Scholar 

  37. Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK (2012) Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28:1811–1817. https://doi.org/10.1093/bioinformatics/bts271

    Article  PubMed  CAS  Google Scholar 

  38. Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, Lu X (2012) Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front Genet 3:35. https://doi.org/10.3389/fgene.2012.00035

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92. https://doi.org/10.4161/fly.19695

    Article  CAS  Google Scholar 

  40. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M, Jubb H, Sondka Z, Thompson S, De T, Campbell PJ (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777–D783. https://doi.org/10.1093/nar/gkw1121

    Article  PubMed  CAS  Google Scholar 

  41. Bethesda (MD): National Center for Biotechnology Information, National Library of Medicine. Database of Single Nucleotide Polymorphisms (dbSNP). http://www.ncbi.nlm.nih.gov/SNP/

  42. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won H-H, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Consortium EA (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285. https://doi.org/10.1038/nature19057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ramos AH, Lichtenstein L, Gupta M, Lawrence MS, Pugh TJ, Saksena G, Meyerson M, Getz G (2015) Oncotator: cancer variant annotation tool. Hum Mutat 36:E2423-2429. https://doi.org/10.1002/humu.22771

    Article  Google Scholar 

  44. Skidmore ZL, Wagner AH, Lesurf R, Campbell KM, Kunisaki J, Griffith OL, Griffith M (2016) GenVisR: genomic visualizations in R. Bioinformatics 32:3012–3014. https://doi.org/10.1093/bioinformatics/btw325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Silva GO, Siegel MB, Mose LE, Parker JS, Sun W, Perou CM, Chen M (2017) SynthEx: a synthetic-normal-based DNA sequencing tool for copy number alteration detection and tumor heterogeneity profiling. Genome Biol 18:66. https://doi.org/10.1186/s13059-017-1193-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ivanova A, Deal AM (2016) Two-stage design for phase II oncology trials with relaxed futility stopping. Stat Interface 9:93–98. https://doi.org/10.4310/SII.2016.v9.n1.a9

    Article  PubMed  Google Scholar 

  47. Gaspar LE, Scott C, Murray K, Curran W (2000) Validation of the RTOG recursive partitioning analysis (RPA) classification for brain metastases. Int J Radiat Oncol Biol Phys 47:1001–1006

    Article  PubMed  CAS  Google Scholar 

  48. Rugo HS, Seneviratne L, Beck JT, Glaspy JA, Peguero JA, Pluard TJ, Dhillon N, Hwang LC, Nangia C, Mayer IA, Meiller TF, Chambers MS, Sweetman RW, Sabo JR, Litton JK (2017) Prevention of everolimus-related stomatitis in women with hormone receptor-positive, HER2-negative metastatic breast cancer using dexamethasone mouthwash (SWISH): a single-arm, phase 2 trial. Lancet Oncol 18:654–662. https://doi.org/10.1016/S1470-2045(17)30109-2

    Article  PubMed  CAS  Google Scholar 

  49. Huang Y-C, Lin S-J, Shih H-Y, Chou C-H, Chu H-H, Chiu C-C, Yuh C-H, Yeh T-H, Cheng Y-C (2017) Epigenetic regulation of NOTCH1 and NOTCH3 by KMT2A inhibits glioma proliferation. Oncotarget 8:63110–63120. https://doi.org/10.18632/oncotarget.18668

    Article  PubMed  PubMed Central  Google Scholar 

  50. Huang Y-C, Shih H-Y, Lin S-J, Chiu C-C, Ma T-L, Yeh T-H, Cheng Y-C (2015) The epigenetic factor Kmt2a/Mll1 regulates neural progenitor proliferation and neuronal and glial differentiation. Dev Neurobiol 75:452–462. https://doi.org/10.1002/dneu.22235

    Article  PubMed  CAS  Google Scholar 

  51. Chen H, Sun B, Zhao Y, Song X, Fan W, Zhou K, Zhou L, Mao Y, Lu D (2012) Fine mapping of a region of chromosome 11q23.3 reveals independent locus associated with risk of glioma. PLoS ONE 7:e52864. https://doi.org/10.1371/journal.pone.0052864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Baskin R, Woods NT, Mendoza-Fandiño G, Forsyth P, Egan KM, Monteiro ANA (2015) Functional analysis of the 11q23.3 glioma susceptibility locus implicates PHLDB1 and DDX6 in glioma susceptibility. Sci Rep 5:17367. https://doi.org/10.1038/srep17367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Cho YJ, Kang W, Kim SH, Sa JK, Kim N, Paddison PJ, Kim M, Joo KM, Hwang Y-I, Nam D-H (2016) Involvement of DDX6 gene in radio- and chemoresistance in glioblastoma. Int J Oncol 48:1053–1062. https://doi.org/10.3892/ijo.2016.3328

    Article  PubMed  CAS  Google Scholar 

  54. Weiss N, Deboux C, Chaverot N, Miller F, Baron-Van Evercooren A, Couraud P-O, Cazaubon S (2010) IL8 and CXCL13 are potent chemokines for the recruitment of human neural precursor cells across brain endothelial cells. J Neuroimmunol 223:131–134. https://doi.org/10.1016/j.jneuroim.2010.03.009

    Article  PubMed  CAS  Google Scholar 

  55. Brunn A, Montesinos-Rongen M, Strack A, Reifenberger G, Mawrin C, Schaller C, Deckert M (2007) Expression pattern and cellular sources of chemokines in primary central nervous system lymphoma. Acta Neuropathol (Berl) 114:271–276. https://doi.org/10.1007/s00401-007-0258-x

    Article  CAS  Google Scholar 

  56. Tarr PT, Edwards PA (2008) ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2. J Lipid Res 49:169–182. https://doi.org/10.1194/jlr.M700364-JLR200

    Article  PubMed  CAS  Google Scholar 

  57. Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 104:1145–1166. https://doi.org/10.1111/j.1471-4159.2007.05099.x

    Article  PubMed  CAS  Google Scholar 

  58. Hegyi Z, Homolya L (2016) Functional cooperativity between ABCG4 and ABCG1 isoforms. PLoS ONE 11:e0156516. https://doi.org/10.1371/journal.pone.0156516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Theus MH, Brickler T, Meza AL, Coutermarsh-Ott S, Hazy A, Gris D, Allen IC (2017) Loss of NLRX1 exacerbates neural tissue damage and NF-κB signaling following brain injury. J Immunol 1950 199:3547–3558. https://doi.org/10.4049/jimmunol.1700251

    Article  PubMed  CAS  Google Scholar 

  60. Imbeault E, Mahvelati TM, Braun R, Gris P, Gris D (2014) Nlrx1 regulates neuronal cell death. Mol Brain 7:90. https://doi.org/10.1186/s13041-014-0090-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mounsey L, Deal AM, Benbow JM, Keith K, Zagar TM, Dees EC, Carey LA, Ewend M, Anders CK (2016) A changing natural history of HER2-positive breast cancer metastatic to the brain in the era of new, targeted therapies. Clin Breast Cancer 18(1):29–37

    Article  Google Scholar 

  62. Miller JA, Kotecha R, Ahluwalia MS, Mohammadi AM, Chao ST, Barnett GH, Murphy ES, Vogelbaum MA, Angelov L, Peereboom DM, Suh JH (2017) Overall survival and the response to radiotherapy among molecular subtypes of breast cancer brain metastases treated with targeted therapies. Cancer 123:2283–2293. https://doi.org/10.1002/cncr.30616

    Article  PubMed  CAS  Google Scholar 

  63. Leone JP, Leone J, Zwenger AO, Iturbe J, Leone BA, Vallejo CT (2017) Prognostic factors and survival according to tumour subtype in women presenting with breast cancer brain metastases at initial diagnosis. Eur J Cancer 74:17–25. https://doi.org/10.1016/j.ejca.2016.12.015

    Article  PubMed  Google Scholar 

  64. Yardley DA, Noguchi S, Pritchard KI, Burris HA, Baselga J, Gnant M, Hortobagyi GN, Campone M, Pistilli B, Piccart M, Melichar B, Petrakova K, Arena FP, Erdkamp F, Harb WA, Feng W, Cahana A, Taran T, Lebwohl D, Rugo HS (2013) Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther 30:870–884. https://doi.org/10.1007/s12325-013-0060-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lo Nigro C, Vivenza D, Monteverde M, Lattanzio L, Gojis O, Garrone O, Comino A, Merlano M, Quinlan PR, Syed N, Purdie CA, Thompson A, Palmieri C, Crook T (2012) High frequency of complex TP53 mutations in CNS metastases from breast cancer. Br J Cancer 106:397–404. https://doi.org/10.1038/bjc.2011.464

    Article  PubMed  CAS  Google Scholar 

  66. Saunus JM, Quinn MC, Patch A-M, Pearson JV, Bailey PJ, Nones K, McCart Reed AE, Miller D, Wilson PJ, Al-Ejeh F, Mariasegaram M, Lau Q, Withers T, Jeffree RL, Reid LE, Da Silva L, Matsika A, Niland CM, Cummings MC, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Anderson MJ, Fink JL, Holmes O, Kazakoff S, Leonard C, Newell F, Taylor D, Waddell N, Wood S, Xu Q, Kassahn KS, Narayanan V, Taib NA, Teo S-H, Chow YP, kConFab, Jat PS, Brandner S, Flanagan AM, Khanna KK, Chenevix-Trench G, Grimmond SM, Simpson PT, Waddell N, Lakhani SR (2015) Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. J Pathol 237:363–378. https://doi.org/10.1002/path.4583

    Article  PubMed  CAS  Google Scholar 

  67. Priedigkeit N, Hartmaier RJ, Chen Y, Vareslija D, Basudan A, Watters RJ, Thomas R, Leone JP, Lucas PC, Bhargava R, Hamilton RL, Chmielecki J, Puhalla SL, Davidson NE, Oesterreich S, Brufsky AM, Young L, Lee AV (2016) Intrinsic subtype switching and acquired ERBB2/HER2 amplifications and mutations in breast cancer brain metastases. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2016.5630

    Article  Google Scholar 

  68. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A, Jones RT, Van Allen EM, Lawrence MS, Horowitz PM, Cibulskis K, Ligon KL, Tabernero J, Seoane J, Martinez-Saez E, Curry WT, Dunn IF, Paek SH, Park SH, McKenna A, Chevalier A, Rosenberg M, Barker FG 2nd, Gill CM, Van Hummelen P, Thorner AR, Johnson BE, Hoang MP, Choueiri TK, Signoretti S, Sougnez C, Rabin MS, Lin NU, Winer EP, Stemmer-Rachamimov A, Meyerson M, Garraway L, Gabriel S, Lander ES, Beroukhim R, Batchelor TT, Baselga J, Louis DN, Getz G, Hahn WC (2015) Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 5:1164–1177. https://doi.org/10.1158/2159-8290.CD-15-0369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families who participated in this trial. We also thank the following cores and groups at UNC-Chapel Hill for their assistance with this correlative study: Tissue Procurement Facility, Translational Pathology Laboratory, Translational Genomics Laboratory, and Lineberger Bioinformatics Group. We also appreciate Erin Laurie’s administrative support.

Funding

This study was funded by the Novartis Pharmaceuticals, Damon Runyon Research Foundation (CKA), National Institute of Health K23 (CKA), National Institute of Health F30-CA200345 (MBS), and University of North Carolina Network Group Integrated Translational Science Center award (NCI 5U10CA181009).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Amanda E. D. Van Swearingen, PhD, Marni B. Siegel, PhD, Allison M Deal, Carey K. Anders, Lisa A. Carey. Financial support: Carey K. Anders (Novartis, Damon Runyon Cancer Foundation). Administrative support: Carey K. Anders. Provision of study materials or patients: Elizabeth Claire Dees, Hyman Muss, Trevor Jolly, Timothy M. Zagar, Julie Fisher, Nikita Shah, Lisle Nabell, Rita Nanda, Patrick Dillon, Vandana Abramson, Lisa (A) Carey, Carey K. Anders, Collection and assembly of data: Amanda E. D. Van Swearingen, Marni (B) Siegel, Allison M. Deal, Maria J. Sambade, Alan Hoyle, D. Neil Hayes, Heejoon Jo, Paul Little, Nirali Patel, (C) Ryan Miller, Joel S. Parker, J. Keith Smith, Carey K. Anders. Data analysis and interpretation: Marni B. Siegel, Amanda E. (D) Van Swearingen, Allison Mary Deal, D. Neil Hayes, Joel S. Parker, Carey K. Anders. Manuscript writing: Amanda (E) D. Van Swearingen, Marni B. Siegel, Allison Mary Deal, Carey K. Anders. Final approval of manuscript: All authors.

Corresponding author

Correspondence to Carey K. Anders.

Ethics declarations

Conflict of interest

Carey K. Anders is an uncompensated consultant/advisory board member for Novartis, Sanofi, toBBB, Angiochem, Merrimack, Lily, Genentech, Nektar, and Kadmon, receives unrelated research funding from Novartis, Sanofi, toBBB, Angiochem, Merrimack, PUMA, Lily, Merck, Oncothyreon, Cascadian, Nektar, and Tesaro, and receives honoraria for UptoDate and Jones and Bartlett Publishing. Rita Nanda is a consultant/advisory board member for AstraZeneca, Celgene, Genentech, Merck, Pfizer, Puma, and Syndax. Nikita Shah is a consultant for Novartis. The other authors declare they have no conflicts of interest.

Ethical approval

This manuscript complies with all current laws of the country in which they were performed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained by all individual participants included in the study.

Research involving human and animal participants

This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8086 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Swearingen, A.E.D., Siegel, M.B., Deal, A.M. et al. LCCC 1025: a phase II study of everolimus, trastuzumab, and vinorelbine to treat progressive HER2-positive breast cancer brain metastases. Breast Cancer Res Treat 171, 637–648 (2018). https://doi.org/10.1007/s10549-018-4852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4852-5

Keywords

Navigation