Skip to main content

Advertisement

Log in

Pro-apoptotic effect of Δ2-TGZ in “claudin-1-low” triple-negative breast cancer cells: involvement of claudin-1

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

An Erratum to this article was published on 31 July 2017

This article has been updated

Abstract

Purpose

40% of triple-negative breast cancer (TNBC) do not express claudin-1, a major constituent of tight junction. Patients with these “claudin-1-low” tumors present a higher relapse incidence. A major challenge in oncology is the development of innovative therapies for such poor prognosis tumors. In this context, we study the anticancer effects of ∆2-TGZ, a compound derived from troglitazone (TGZ), on cell models of these tumors.

Methods and results

In MDA-MB-231 and Hs578T “claudin-1-low” TNBC cells, Δ2-TGZ treatment induced claudin-1 protein expression and triggered apoptosis as measured by FACS analysis (annexin V/PI co-staining). Interestingly, in the non-tumorigenic human breast epithelial cell line MCF-10A, the basal level of claudin-1 was not modified following Δ2-TGZ treatment, which did not induce apoptosis. Furthermore, claudin-1-transfected MDA-MB-231 and Hs578T cells displayed a significant increase of cleaved PARP-1 and caspase 7, caspase 3/7 activities, and TUNEL staining. RNA interference was performed in order to inhibit Δ2-TGZ-induced claudin-1 expression in both the cells. In absence of claudin-1, a decrease of cleaved PARP-1 and caspase 7 and caspase 3/7 activities were observed in MDA-MB-231 but not in Hs578T cells.

Conclusion

Claudin-1 overexpression and Δ2-TGZ treatment are associated to apoptosis in MDA-MB-231 and Hs578T “claudin-1-low” TNBC. Moreover, in MDA-MB-231 cells, claudin-1 is involved in the pro-apoptotic effect of Δ2-TGZ. Our results suggest that claudin-1 re-expression could be an interesting therapeutic strategy for “claudin-1-low” TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 31 July 2017

    An erratum to this article has been published.

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2012) GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11. In: Lyon, France: International Agency for Research on Cancer; 2013

  2. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948. doi:10.1056/NEJMra1001389

    Article  CAS  PubMed  Google Scholar 

  3. Zardavas D, Tryfonidis K, Goulioti T, Piccart M (2016) Targeted adjuvant therapy in breast cancer. Expert Rev Anticancer Ther. doi:10.1080/14737140.2016.1247698

    Article  PubMed  Google Scholar 

  4. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502. doi:10.1001/jama.295.21.2492

    Article  CAS  PubMed  Google Scholar 

  5. Lu S, Singh K, Mangray S, Tavares R, Noble L, Resnick MB, Yakirevich E (2013) Claudin expression in high-grade invasive ductal carcinoma of the breast: correlation with the molecular subtype. Mod Pathol 26:485–495. doi:10.1038/modpathol.2012.187

    Article  CAS  PubMed  Google Scholar 

  6. Tokes AM, Kulka J, Paku S, Szik A, Paska C, Novak PK, Szilak L, Kiss A, Bogi K, Schaff Z (2005) Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res 7:R296–R305. doi:10.1186/bcr983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morohashi S, Kusumi T, Sato F, Odagiri H, Chiba H, Yoshihara S, Hakamada K, Sasaki M, Kijima H (2007) Decreased expression of claudin-1 correlates with recurrence status in breast cancer. Int J Mol Med 20:139–143

    PubMed  Google Scholar 

  8. Szasz AM, Tokes AM, Micsinai M, Krenacs T, Jakab C, Lukacs L, Nemeth Z, Baranyai Z, Dede K, Madaras L, Kulka J (2011) Prognostic significance of claudin expression changes in breast cancer with regional lymph node metastasis. Clin Exp Metastasis 28:55–63. doi:10.1007/s10585-010-9357-5

    Article  CAS  PubMed  Google Scholar 

  9. Ma F, Ding X, Fan Y, Ying J, Zheng S, Lu N, Xu B (2014) A CLDN1-negative phenotype predicts poor prognosis in triple-negative breast cancer. PLoS ONE 9:e112765. doi:10.1371/journal.pone.0112765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401

    Article  CAS  Google Scholar 

  11. Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141:397–408

    Article  CAS  Google Scholar 

  12. Zhou B, Moodie A, Blanchard AA, Leygue E, Myal Y (2015) Claudin 1 in breast cancer: new insights. J Clin Med 4:1960–1976. doi:10.3390/jcm4121952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang K, Yao HP, Wang MH (2008) Activation of RON differentially regulates claudin expression and localization: role of claudin-1 in RON-mediated epithelial cell motility. Carcinogenesis 29:552–559. doi:10.1093/carcin/bgn003

    Article  CAS  PubMed  Google Scholar 

  14. Kulawiec M, Safina A, Desouki MM, Still I, Matsui S, Bakin A, Singh KK (2008) Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther 7:1732–1743

    Article  CAS  Google Scholar 

  15. Hoevel T, Macek R, Swisshelm K, Kubbies M (2004) Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J Cancer 108:374–383. doi:10.1002/ijc.11571

    Article  CAS  PubMed  Google Scholar 

  16. Akasaka H, Sato F, Morohashi S, Wu Y, Liu Y, Kondo J, Odagiri H, Hakamada K, Kijima H (2010) Anti-apoptotic effect of claudin-1 in tamoxifen-treated human breast cancer MCF-7 cells. BMC Cancer 10:548. doi:10.1186/1471-2407-10-548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Wang L, Lin XL, Wang J, Yu JH, Miao Y, Wang EH (2012) Anti-apoptotic effect of claudin-1 on TNF-a-induced apoptosis in human breast cancer MCF-7. Tumor Biol 33:2307–2315

    Article  CAS  Google Scholar 

  18. Zhou B, Blanchard A, Wang N, Ma X, Han J, Schroedter I, Leygue E, Myal Y (2015) Claudin 1 promotes migration and increases sensitivity to tamoxifen and anticancer drugs in luminal-like human breast cancer cells MCF7. Cancer Invest 33:429–439. doi:10.3109/07357907.2015.1060996

    Article  CAS  PubMed  Google Scholar 

  19. Frohlich E, Wahl R (2015) Chemotherapy and chemoprevention by thiazolidinediones. Biomed Res Int 2015:845340. doi:10.1155/2015/845340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M, McMurray JJ (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135. doi:10.1016/S0140-6736(09)60953-3

    Article  CAS  PubMed  Google Scholar 

  21. Monami M, Lamanna C, Marchionni N, Mannucci E (2008) Rosiglitazone and risk of cancer: a meta-analysis of randomized clinical trials. Diabetes Care 31:1455–1460. doi:10.2337/dc07-2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS, Oh W, Demetri G, Figg WD, Zhou XP, Eng C, Spiegelman BM, Kantoff PW (2000) Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA 97:10990–10995. doi:10.1073/pnas.180329197

    Article  CAS  PubMed  Google Scholar 

  23. Prost S, Relouzat F, Spentchian M, Ouzegdouh Y, Saliba J, Massonnet G, Beressi JP, Verhoeyen E, Raggueneau V, Maneglier B, Castaigne S, Chomienne C, Chretien S, Rousselot P, Leboulch P (2015) Erosion of the chronic myeloid leukaemia stem cell pool by PPAR gamma agonists. Nature. doi:10.1038/nature15248

    Article  PubMed  Google Scholar 

  24. Chojkier M (2005) Troglitazone and liver injury: in search of answers. Hepatology 41:237–246. doi:10.1002/hep.20567

    Article  CAS  PubMed  Google Scholar 

  25. Salamone S, Colin C, Grillier-Vuissoz I, Kuntz S, Mazerbourg S, Flament S, Martin H, Richert L, Chapleur Y, Boisbrun M (2012) Synthesis of new troglitazone derivatives: anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Eur J Med Chem 51:206–215. doi:10.1016/j.ejmech.2012.02.044

    Article  CAS  PubMed  Google Scholar 

  26. Lecomte J, Flament S, Salamone S, Boisbrun M, Mazerbourg S, Chapleur Y, Grillier-Vuissoz I (2008) Disruption of ERalpha signalling pathway by PPARgamma agonists: evidences of PPARgamma-independent events in two hormone-dependent breast cancer cell lines. Breast Cancer Res Treat 112:437–451. doi:10.1007/s10549-007-9886-z

    Article  CAS  PubMed  Google Scholar 

  27. Colin C, Salamone S, Grillier-Vuissoz I, Boisbrun M, Kuntz S, Lecomte J, Chapleur Y, Flament S (2010) New troglitazone derivatives devoid of PPARgamma agonist activity display an increased antiproliferative effect in both hormone-dependent and hormone-independent breast cancer cell lines. Breast Cancer Res Treat 124:101–110. doi:10.1007/s10549-009-0700-y

    Article  CAS  PubMed  Google Scholar 

  28. Colin-Cassin C, Yao X, Cerella C, Chbicheb S, Kuntz S, Mazerbourg S, Boisbrun M, Chapleur Y, Diederich M, Flament S, Grillier-Vuissoz I (2015) PPARgamma-inactive Delta2-troglitazone independently triggers ER stress and apoptosis in breast cancer cells. Mol Carcinog 54:393–404. doi:10.1002/mc.22109

    Article  CAS  PubMed  Google Scholar 

  29. Di Cello F, Cope L, Li H, Jeschke J, Wang W, Baylin SB, Zahnow CA (2013) Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer. PLoS ONE 8:e68630. doi:10.1371/journal.pone.0068630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ogasawara N, Kojima T, Go M, Ohkuni T, Koizumi J, Kamekura R, Masaki T, Murata M, Tanaka S, Fuchimoto J, Himi T, Sawada N (2010) PPARgamma agonists upregulate the barrier function of tight junctions via a PKC pathway in human nasal epithelial cells. Pharmacol Res 61(6):489–498. doi:10.1016/j.phrs.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  31. Varley CL, Garthwaite MA, Cross W, Hinley J, Trejdosiewicz LK, Southgate J (2006) PPARgamma-regulated tight junction development during human urothelial cytodifferentiation. J Cell Physiol 208:407–417. doi:10.1002/jcp.20676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumei S, Motomura W, Yoshizaki T, Takakusaki K, Okumura T (2009) Troglitazone increases expression of E-cadherin and claudin 4 in human pancreatic cancer cells. Biochem Biophys Res Commun 380:614–619. doi:10.1016/j.bbrc.2009.01.134

    Article  CAS  PubMed  Google Scholar 

  33. Okumura T (2010) Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol 45:1097–1102. doi:10.1007/s00535-010-0310-9

    Article  CAS  PubMed  Google Scholar 

  34. Beeman N, Webb PG, Baumgartner HK (2012) Occludin is required for apoptosis when claudin-claudin interactions are disrupted. Cell Death Dis 3:e273. doi:10.1038/cddis.2012.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fortier AM, Asselin E, Cadrin M (2013) Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J Biol Chem 288:11555–11571. doi:10.1074/jbc.M112.428920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the “Université de Lorraine,” the “Conseil Régional du Grand Est,” and the “Ligue Contre le Cancer.” Marine Geoffroy was recipient of a PhD grant of the «Ministère de l’Enseignement Supérieur et de la Recherche». We thank Christelle Thibault-Carpentier and Doulaye Dembele from the IGBMC GenomEast platform for the GEO deposit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Grillier-Vuissoz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The original version of this article was revised: The given and family names of the authors were swapped. The corrected author group was updated in the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 36 kb)

10549_2017_4378_MOESM2_ESM.pptx

Supplementary data. 1 Changes in expression level of genes related to cell adhesion and associated with cancer progression in Δ2-TGZ-treated MCF-7 cells after microarray analysis. Cells were treated for 12 h with DMSO or 25 µM of Δ2-TGZ Gene-expression microarray data were generated using GeneChip Human Gene 1.0 ST Array (containing 764,885 distinct probes including 28,869 well-annotated genes) as previously described [28]. Microarray data are available from Geo Data set (https://www.ncbi.nlm.nih.gov/geo/info/linking.html, accession number GSE99941). Supplementary material 2 (PPTX 39 kb)

10549_2017_4378_MOESM3_ESM.pptx

Supplementary data. 2 Claudin-1 and occludin co-localization in response to Δ2-TGZ in MDA-MB-231 and Hs578T cells. After treatment for 24 h with DMSO (Ctrl) or 20 µM of Δ2-TGZ, immunofluorescence staining for claudin-1 and occludin were performed in MDA-MB-231 and Hs578T cells. DRAQ5 staining was used for visualisation of the nuclei. a–b Cells were observed by confocal microscopy with magnification from ×400 for Hs578T to ×536 for MDA-MB-231 depending of digital confocal zooming combine with ×40 objective (NA 0.8). One confocal z section of cell of each condition is presented. Claudin-1 staining is upregulated and punctiform in both cell lines. Occludin staining is upregulated only in MDA-MB-231 cells and colocalized with claudin-1. Bar represents 50 µm. Supplementary material 3 (PPTX 2351 kb)

10549_2017_4378_MOESM4_ESM.pptx

Supplementary data. 3 Increase apoptosis in MDA-MB-231 cells overexpressing claudin-1 with Δ2-TGZ. MDA-MB-231 cells were transiently transfected with pcDNA3.1 or pcDNA3.1 containing a human claudin-1 expression vector (pcDNA3.1-CLDN1) and treated with 20 µM of Δ2-TGZ. After 48 h of transfection and 24 h of treatment, cells were subjected to western blot analysis. a Western blot analysis was performed with antibodies recognizing claudin-1 (CLDN1) cleaved PARP-1 and cleaved caspase 7. α-tubulin was used as loading control. b Relative protein level corresponds to claudin-1, cleaved PARP-1 (PARP) and cleaved caspase 7 band intensity value adjusted to α-tubulin for Δ2-pcDNA3.1 and Δ2-pcDNA3.1-CLDN1. The values represent the mean ± SEM 5 different experiments. Student-t test was used to determine significance difference from control cells, were *p < 0.05, **p < 0.01 and ***p < 0.001. Supplementary material 4 (PPTX 3130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geoffroy, M., Kleinclauss, A., Grandemange, S. et al. Pro-apoptotic effect of Δ2-TGZ in “claudin-1-low” triple-negative breast cancer cells: involvement of claudin-1. Breast Cancer Res Treat 165, 517–527 (2017). https://doi.org/10.1007/s10549-017-4378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4378-2

Keywords

Navigation