Skip to main content

Advertisement

Log in

Prolactin/androgen-inducible carboxypeptidase-D increases with nitrotyrosine and Ki67 for breast cancer progression in vivo, and upregulates progression markers VEGF-C and Runx2 in vitro

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Carboxypeptidase-D (CPD) cleaves C-terminal arginine (Arg) to produce nitric oxide (NO). Upregulation of CPD and NO by 17β-estradiol, prolactin (PRL), and androgen increases survival of human breast cancer (BCa) cells in vitro. To demonstrate similar events in vivo, CPD, nitrotyrosine (NT, hallmark of NO action), androgen receptor (AR), prolactin receptor (PRLR), and phospho-Stat5a (for activated PRLR) levels were evaluated in benign and malignant human breast tissues, and correlated with cell proliferation (Ki67) and BCa progression (Cullin-3) biomarkers.

Methods

Paraffin-embedded breast tissues were analyzed by immunohistochemistry (IHC). BCa progression markers in human MCF-7 and T47D BCa cell lines treated with NO donor SIN-1 or PRL, ±CPD inhibitors were analyzed by RT-qPCR and immunoblotting.

Results

IHC showed progressive increases in CPD, NT, Ki67, and Cullin-3 from low levels in benign tissues to high levels in ductal carcinoma in situ, low-grade, high-grade, and triple-negative BCa. CPD and NT staining were closely associated, implicating CPD in NO production. Phospho-Stat5a increased significantly from benign to high-grade BCa and was mostly nuclear. AR and PRLR were abundant in benign breast and BCa, including triple-negative tumors. SIN-1 and PRL increased VEGF-C and Runx2, but not Cullin-3, in BCa cell lines. PRL induction of VEGF-C and Runx2 was inhibited partly by CPD inhibitors, implicating NO, produced by PRL-regulated CPD, in BCa progression.

Conclusions

The CPD-Arg-NO pathway contributes to BCa progression in vitro and in vivo. PRL/androgen activation of the pathway support combined AR and PRLR blockade as an additional therapy for BCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guiu S, Michiels S, Andre F, Cortes J, Denkert C, Di Leo A, Hennessy BT, Sorlie T, Sotiriou C, Turner N, Van de Vijver M, Viale G, Loi S, Reis-Filho JS (2012) Molecular subclasses of breast cancer: how do we define them? The IMPAKT 2012 working group statement. Ann Oncol 23(12):2997–3006. doi:10.1093/annonc/mds586

    Article  CAS  PubMed  Google Scholar 

  2. Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5(1):5–23. doi:10.1016/j.molonc.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  3. Peppercorn J, Perou CM, Carey LA (2008) Molecular subtypes in breast cancer evaluation and management: divide and conquer. Cancer Invest 26(1):1–10. doi:10.1080/07357900701784238

    Article  CAS  PubMed  Google Scholar 

  4. McGuire WL, Osborne CK, Clark GM, Knight WA (1982) Steroid hormone receptors and carcinoma of the breast. Am J Physiol 243(2):E99–E102

    CAS  PubMed  Google Scholar 

  5. Dean-Colomb W, Esteva FJ (2008) Her2-positive breast cancer: herceptin and beyond. Eur J Cancer 44(18):2806–2812. doi:10.1016/j.ejca.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  6. Elias AD (2010) Triple-negative breast cancer: a short review. Am J Clin Oncol 33(6):637–645. doi:10.1097/COC.0b013e3181b8afcf

    Article  PubMed  Google Scholar 

  7. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948. doi:10.1056/NEJMra1001389

    Article  CAS  PubMed  Google Scholar 

  8. Birrell SN, Hall RE, Tilley WD (1998) Role of the androgen receptor in human breast cancer. J Mammary Gland Biol Neoplasia 3(1):95–103

    Article  CAS  PubMed  Google Scholar 

  9. Park S, Koo J, Park HS, Kim JH, Choi SY, Lee JH, Park BW, Lee KS (2010) Expression of androgen receptors in primary breast cancer. Ann Oncol 21(3):488–492. doi:10.1093/annonc/mdp510

    Article  CAS  PubMed  Google Scholar 

  10. Reynolds C, Montone KT, Powell CM, Tomaszewski JE, Clevenger CV (1997) Expression of prolactin and its receptor in human breast carcinoma. Endocrinology 138(12):5555–5560. doi:10.1210/endo.138.12.5605

    Article  CAS  PubMed  Google Scholar 

  11. Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, Cronin KA (2014) US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. doi:10.1093/jnci/dju055

    PubMed  PubMed Central  Google Scholar 

  12. Rakha EA, Pinder SE, Bartlett JM, Ibrahim M, Starczynski J, Carder PJ, Provenzano E, Hanby A, Hales S, Lee AH, Ellis IO, National Coordinating Committee for Breast P (2015) Updated UK recommendations for HER2 assessment in breast cancer. J Clin Pathol 68(2):93–99. doi:10.1136/jclinpath-2014-202571

    Article  PubMed  Google Scholar 

  13. Krishnamurti U, Silverman JF (2014) HER2 in breast cancer: a review and update. Adv Anat Pathol 21(2):100–107. doi:10.1097/PAP.0000000000000015

    Article  CAS  PubMed  Google Scholar 

  14. Purdie CA, Quinlan P, Jordan LB, Ashfield A, Ogston S, Dewar JA, Thompson AM (2014) Progesterone receptor expression is an independent prognostic variable in early breast cancer: a population-based study. Br J Cancer 110(3):565–572. doi:10.1038/bjc.2013.756

    Article  CAS  PubMed  Google Scholar 

  15. Muir D, Kanthan R, Kanthan SC (2003) Male versus female breast cancers. A population-based comparative immunohistochemical analysis. Arch Pathol Lab Med 127(1):36–41. doi:10.1043/0003-9985(2003)127<36:MVFB>2.0.CO;2

    CAS  PubMed  Google Scholar 

  16. Birrell SN, Bentel JM, Hickey TE, Ricciardelli C, Weger MA, Horsfall DJ, Tilley WD (1995) Androgens induce divergent proliferative responses in human breast cancer cell lines. J Steroid Biochem Mol Biol 52(5):459–467

    Article  CAS  PubMed  Google Scholar 

  17. Somboonporn W, Davis SR, National H, Medical Research C (2004) Testosterone effects on the breast: implications for testosterone therapy for women. Endocr Rev 25(3):374–388. doi:10.1210/er.2003-0016

    Article  CAS  PubMed  Google Scholar 

  18. Dorgan JF, Longcope C, Stephenson HE Jr, Falk RT, Miller R, Franz C, Kahle L, Campbell WS, Tangrea JA, Schatzkin A (1996) Relation of prediagnostic serum estrogen and androgen levels to breast cancer risk. Cancer Epidemiol Biomarkers Prev 5(7):533–539

    CAS  PubMed  Google Scholar 

  19. Wysowski DK, Comstock GW, Helsing KJ, Lau HL (1987) Sex hormone levels in serum in relation to the development of breast cancer. Am J Epidemiol 125(5):791–799

    Article  CAS  PubMed  Google Scholar 

  20. Hankinson SE, Willett WC, Manson JE, Colditz GA, Hunter DJ, Spiegelman D, Barbieri RL, Speizer FE (1998) Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 90(17):1292–1299

    Article  CAS  PubMed  Google Scholar 

  21. Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D’Amato NC, Spoelstra NS, Edgerton SM, Jean A, Guerrero J, Gomez F, Medicherla S, Alfaro IE, McCullagh E, Jedlicka P, Torkko KC, Thor AD, Elias AD, Protter AA, Richer JK (2014) Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res 16(1):R7. doi:10.1186/bcr3599

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kelly PA, Djiane J, Postel-Vinay MC, Edery M (1991) The prolactin/growth hormone receptor family. Endocr Rev 12(3):235–251

    Article  CAS  PubMed  Google Scholar 

  23. Ginsburg E, Vonderhaar BK (1995) Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 55(12):2591–2595

    CAS  PubMed  Google Scholar 

  24. Clevenger CV, Plank TL (1997) Prolactin as an autocrine/paracrine factor in breast tissue. J Mammary Gland Biol Neoplasia 2(1):59–68

    Article  CAS  PubMed  Google Scholar 

  25. Holtkamp W, Nagel GA, Wander HE, Rauschecker HF, von Heyden D (1984) Hyperprolactinemia is an indicator of progressive disease and poor prognosis in advanced breast cancer. Int J Cancer 34(3):323–328

    Article  CAS  PubMed  Google Scholar 

  26. Hankinson SE, Willett WC, Michaud DS, Manson JE, Colditz GA, Longcope C, Rosner B, Speizer FE (1999) Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 91(7):629–634

    Article  CAS  PubMed  Google Scholar 

  27. Hachim IY, Hachim MY, Lopez VM, Lebrun JJ, Ali S (2016) Prolactin receptor expression is an independent favorable prognostic marker in human breast cancer. Appl Immunohistochem Mol Morphol 24(4):238–245. doi:10.1097/PAI.0000000000000178

    Article  CAS  PubMed  Google Scholar 

  28. Hachim IY, Shams A, Lebrun JJ, Ali S (2016) A favorable role of prolactin in human breast cancer reveals novel pathway-based gene signatures indicative of tumor differentiation and favorable patient outcome. Hum Pathol 53:142–152. doi:10.1016/j.humpath.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  29. Lopez-Ozuna VM, Hachim IY, Hachim MY, Lebrun JJ, Ali S (2016) Prolactin pro-differentiation pathway in triple negative breast cancer: impact on prognosis and potential therapy. Sci Rep 6:30934. doi:10.1038/srep30934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio F (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. Embo J 15(6):1292–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Migliaccio A, Varricchio L, De Falco A, Castoria G, Arra C, Yamaguchi H, Ciociola A, Lombardi M, Di Stasio R, Barbieri A, Baldi A, Barone MV, Appella E, Auricchio F (2007) Inhibition of the SH3 domain-mediated binding of Src to the androgen receptor and its effect on tumor growth. Oncogene 26(46):6619–6629. doi:10.1038/sj.onc.1210487

    Article  CAS  PubMed  Google Scholar 

  32. Gutzman JH, Rugowski DE, Schroeder MD, Watters JJ, Schuler LA (2004) Multiple kinase cascades mediate prolactin signals to activating protein-1 in breast cancer cells. Mol Endocrinol 18(12):3064–3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Skidgel RA, Erdos EG (1998) Cellular carboxypeptidases. Immunol Rev 161:129–141

    Article  CAS  PubMed  Google Scholar 

  34. Song L, Fricker LD (1995) Purification and characterization of carboxypeptidase D, a novel carboxypeptidase E-like enzyme, from bovine pituitary. J Biol Chem 270(42):25007–25013

    Article  CAS  PubMed  Google Scholar 

  35. Song L, Fricker LD (1996) Tissue distribution and characterization of soluble and membrane-bound forms of metallocarboxypeptidase D. J Biol Chem 271(46):28884–28889

    Article  CAS  PubMed  Google Scholar 

  36. Tan F, Rehli M, Krause SW, Skidgel RA (1997) Sequence of human carboxypeptidase D reveals it to be a member of the regulatory carboxypeptidase family with three tandem active site domains. Biochem J 327(Pt 1):81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Novikova EG, Eng FJ, Yan L, Qian Y, Fricker LD (1999) Characterization of the enzymatic properties of the first and second domains of metallocarboxypeptidase D. J Biol Chem 274(41):28887–28892

    Article  CAS  PubMed  Google Scholar 

  38. O’Malley PG, Sangster SM, Abdelmagid SA, Bearne SL, Too CKL (2005) Characterization of a novel, cytokine-inducible carboxypeptidase D isoform in haematopoietic tumour cells. Biochem J 390(Pt 3):665–673. doi:10.1042/BJ20050025

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abdelmagid SA, Too CKL (2008) Prolactin and estrogen upregulate carboxypeptidase-D to promote nitric oxide production and survival of MCF-7 breast cancer cells. Endocinology 149(10):4821–4828. doi:10.1210/en.2008-0145

    Article  CAS  Google Scholar 

  40. Abdelmagid SA, Rickard JA, McDonald WJ, Thomas LN, Too CKL (2011) CAT-1-mediated arginine uptake and regulation of nitric oxide synthases for the survival of human breast cancer cell lines. J Cell Biochem 112(4):1084–1092. doi:10.1002/jcb.23022

    Article  CAS  PubMed  Google Scholar 

  41. Koirala S, Thomas LN, Too CKL (2014) Prolactin/Stat5 and androgen R1881 coactivate carboxypeptidase-D gene in breast cancer cells. Mol Endocrinol 28(3):331–343. doi:10.1210/me.2013-1202

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thomas LN, Morehouse TJ, Too CKL (2012) Testosterone and prolactin increase carboxypeptidase-D and nitric oxide levels to promote survival of prostate cancer cells. Prostate 72(4):450–460. doi:10.1002/pros.21446

    Article  CAS  PubMed  Google Scholar 

  43. Thomas LN, Merrimen J, Bell DG, Rendon R, Goffin V, Too CKL (2014) Carboxypeptidase-D is elevated in prostate cancer and its anti-apoptotic activity is abolished by combined androgen and prolactin receptor targeting. Prostate 74(7):732–742. doi:10.1002/pros.22793

    Article  CAS  PubMed  Google Scholar 

  44. Thomas LN, Merrimen J, Bell DG, Rendon R, Too CKL (2015) Prolactin- and testosterone-induced carboxypeptidase-D correlates with increased nitrotyrosines and Ki67 in prostate cancer. Prostate 75:1726–1736. doi:10.1002/pros.23054

    Article  CAS  PubMed  Google Scholar 

  45. Jin T, Fu J, Feng XJ, Wang SM, Huang X, Zhu MH, Zhang SH (2013) SiRNA-targeted carboxypeptidase D inhibits hepatocellular carcinoma growth. Cell Biol Int 37:929–939. doi:10.1002/cbin.10113

    Article  CAS  PubMed  Google Scholar 

  46. Bouzubar N, Walker KJ, Griffiths K, Ellis IO, Elston CW, Robertson JF, Blamey RW, Nicholson RI (1989) Ki67 immunostaining in primary breast cancer: pathological and clinical associations. Br J Cancer 59(6):943–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pathmanathan N, Balleine RL (2013) Ki67 and proliferation in breast cancer. J Clin Pathol 66(6):512–516. doi:10.1136/jclinpath-2012-201085

    Article  CAS  PubMed  Google Scholar 

  48. Mikalsen LT, Dhakal HP, Bruland OS, Nesland JM, Olsen DR (2011) Quantification of angiogenesis in breast cancer by automated vessel identification in CD34 immunohistochemical sections. Anticancer Res 31(12):4053–4060

    PubMed  Google Scholar 

  49. Haagenson KK, Tait L, Wang J, Shekhar MP, Polin L, Chen W, Wu GS (2012) Cullin-3 protein expression levels correlate with breast cancer progression. Cancer Biol Ther 13(11):1042–1046. doi:10.4161/cbt.21046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huo X, Li S, Shi T, Suo A, Ruan Z, Guo H, Yao Y (2015) Cullin3 promotes breast cancer cells metastasis and epithelial-mesenchymal transition by targeting BRMS1 for degradation. Oncotarget 6(39):41959–41975. doi:10.18632/oncotarget.5999

    PubMed  PubMed Central  Google Scholar 

  51. Too CKL, Vickaryous N, Boudreau RT, Sangster SM (2001) Identification and nuclear localization of a novel prolactin and cytokine-responsive carboxypeptidase D. Endocrinology 142(3):1357–1367. doi:10.1210/endo.142.3.8041

    Article  CAS  PubMed  Google Scholar 

  52. Goffin V, Bogorad RL, Touraine P (2010) Identification of gain-of-function variants of the human prolactin receptor. Methods Enzymol 484:329–355. doi:10.1016/B978-0-12-381298-8.00017-4

    Article  CAS  PubMed  Google Scholar 

  53. Chauhan H, Abraham A, Phillips JR, Pringle JH, Walker RA, Jones JL (2003) There is more than one kind of myofibroblast: analysis of CD34 expression in benign, in situ, and invasive breast lesions. J Clin Pathol 56(4):271–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fiorillo AA, Medler TR, Feeney YB, Liu Y, Tommerdahl KL, Clevenger CV (2011) HMGN2 inducibly binds a novel transactivation domain in nuclear PRLr to coordinate Stat5a-mediated transcription. Mol Endocrinol 25(9):1550–1564. doi:10.1210/me.2011-0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nevalainen MT, Xie J, Torhorst J, Bubendorf L, Haas P, Kononen J, Sauter G, Rui H (2004) Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J Clin Oncol 22(11):2053–2060. doi:10.1200/JCO.2004.11.046

    Article  CAS  PubMed  Google Scholar 

  56. Peck AR, Witkiewicz AK, Liu C, Stringer GA, Klimowicz AC, Pequignot E, Freydin B, Tran TH, Yang N, Rosenberg AL, Hooke JA, Kovatich AJ, Nevalainen MT, Shriver CD, Hyslop T, Sauter G, Rimm DL, Magliocco AM, Rui H (2011) Loss of nuclear localized and tyrosine phosphorylated Stat5 in breast cancer predicts poor clinical outcome and increased risk of antiestrogen therapy failure. J Clin Oncol 29(18):2448–2458. doi:10.1200/JCO.2010.30.3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jadeski LC, Lala PK (1999) Nitric oxide synthase inhibition by N(G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am J Pathol 155(4):1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakamura Y, Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Nakao K, Nakamura M, Kakudo K (2006) Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res 12(4):1201–1207. doi:10.1158/1078-0432.CCR-05-1269

    Article  CAS  PubMed  Google Scholar 

  59. Tandon M, Chen Z, Pratap J (2014) Runx2 activates PI3K/Akt signaling via mTORC2 regulation in invasive breast cancer cells. Breast Cancer Res 16(1):R16. doi:10.1186/bcr3611

    Article  PubMed  PubMed Central  Google Scholar 

  60. Furth PA, Nakles RE, Millman S, Diaz-Cruz ES, Cabrera MC (2011) Signal transducer and activator of transcription 5 as a key signaling pathway in normal mammary gland developmental biology and breast cancer. Breast Cancer Res 13(5):220. doi:10.1186/bcr2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cotarla I, Ren S, Zhang Y, Gehan E, Singh B, Furth PA (2004) Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer 108(5):665–671. doi:10.1002/ijc.11619

    Article  CAS  PubMed  Google Scholar 

  62. Wagner KU, Rui H (2008) Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia 13(1):93–103. doi:10.1007/s10911-008-9062-z

    Article  PubMed  Google Scholar 

  63. Barash I (2012) Stat5 in breast cancer: potential oncogenic activity coincides with positive prognosis for the disease. Carcinogenesis 33(12):2320–2325. doi:10.1093/carcin/bgs362

    Article  CAS  PubMed  Google Scholar 

  64. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271(5 Pt 1):C1424–C1437

    CAS  PubMed  Google Scholar 

  65. Thomsen LL, Miles DW (1998) Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 17(1):107–118

    Article  CAS  PubMed  Google Scholar 

  66. Orucevic A, Bechberger J, Green AM, Shapiro RA, Billiar TR, Lala PK (1999) Nitric-oxide production by murine mammary adenocarcinoma cells promotes tumor-cell invasiveness. Int J Cancer 81(6):889–896

    Article  CAS  PubMed  Google Scholar 

  67. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6(7):521–534. doi:10.1038/nrc1910

    Article  CAS  PubMed  Google Scholar 

  68. Hirst D, Robson T (2010) Nitric oxide in cancer therapeutics: interaction with cytotoxic chemotherapy. Curr Pharm Des 16(4):411–420

    Article  CAS  PubMed  Google Scholar 

  69. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. doi:10.1172/JCI45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rampurwala M, Wisinski KB, O’Regan R (2016) Role of the androgen receptor in triple-negative breast cancer. Clin Adv Hematol Oncol 14(3):186–193

    PubMed  PubMed Central  Google Scholar 

  71. Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, Blackwell K, Rugo H, Nabell L, Forero A, Stearns V, Doane AS, Danso M, Moynahan ME, Momen LF, Gonzalez JM, Akhtar A, Giri DD, Patil S, Feigin KN, Hudis CA, Traina TA, Translational Breast Cancer Research C (2013) Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res 19(19):5505–5512. doi:10.1158/1078-0432.CCR-12-3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Traina T, Miller K, Yardley D, O’Shaughnessy J, Cortes J, Awada A, Kelly C, Trudeau M, Schmid P, Gianni L, García-Estevez L, Nanda R, Ademuyiwa F, Chan S, Steinberg J, Blaney M, Tudor I, Uppal H, Peterson A, Hudis C (2015) Results from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer (TNBC). J Clin Oncol 33(suppl; abstr):1003

    Google Scholar 

  73. Proverbs-Singh T, Feldman JL, Morris MJ, Autio KA, Traina TA (2015) Targeting the androgen receptor in prostate and breast cancer: several new agents in development. Endocr Relat Cancer 22(3):R87–R106. doi:10.1530/ERC-14-0543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gucalp A, Traina TA (2016) Targeting the androgen receptor in triple-negative breast cancer. Curr Probl Cancer 40(2–4):141–150. doi:10.1016/j.currproblcancer.2016.09.004

    Article  PubMed  Google Scholar 

  75. Goffin V, Bernichtein S, Touraine P, Kelly PA (2005) Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 26(3):400–422. doi:10.1210/er.2004-0016

    Article  CAS  PubMed  Google Scholar 

  76. Bernichtein S, Kayser C, Dillner K, Moulin S, Kopchick JJ, Martial JA, Norstedt G, Isaksson O, Kelly PA, Goffin V (2003) Development of pure prolactin receptor antagonists. J Biol Chem 278(38):35988–35999. doi:10.1074/jbc.M305687200

    Article  CAS  PubMed  Google Scholar 

  77. Bernichtein S, Touraine P, Goffin V (2010) New concepts in prolactin biology. J Endocrinol. doi:10.1677/JOE-10-0069

    PubMed  Google Scholar 

  78. Goffin V, Touraine P (2015) The prolactin receptor as a therapeutic target in human diseases: browsing new potential indications. Expert Opin Ther Targets 19(9):1229–1244. doi:10.1517/14728222.2015.1053209

    Article  CAS  PubMed  Google Scholar 

  79. Damiano JS, Rendahl KG, Karim C, Embry MG, Ghoddusi M, Holash J, Fanidi A, Abrams TJ, Abraham JA (2013) Neutralization of prolactin receptor function by monoclonal antibody LFA102, a novel potential therapeutic for the treatment of breast cancer. Mol Cancer Ther 12(3):295–305. doi:10.1158/1535-7163.MCT-12-0886

    Article  CAS  PubMed  Google Scholar 

  80. Damiano JS, Wasserman E (2013) Molecular pathways: blockade of the PRLR signaling pathway as a novel antihormonal approach for the treatment of breast and prostate cancer. Clin Cancer Res 19(7):1644–1650. doi:10.1158/1078-0432.CCR-12-0138

    Article  CAS  PubMed  Google Scholar 

  81. Agarwal N, Machiels JP, Suarez C, Lewis N, Higgins M, Wisinski K, Awada A, Maur M, Stein M, Hwang A, Mosher R, Wasserman E, Wu G, Zhang H, Zieba R, Elmeliegy M (2016) Phase I study of the prolactin receptor antagonist LFA102 in metastatic breast and castration-resistant prostate cancer. Oncologist 21(5):535–536. doi:10.1634/theoncologist.2015-0502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. O’Sullivan CC, Bates SE (2016) Targeting Prolactin receptor (PRLR) signaling in PRLR-positive breast and prostate cancer. Oncologist 21(5):523–526. doi:10.1634/theoncologist.2016-0108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Breast Cancer Society of Canada/QEII Foundation/Beatrice Hunter Cancer Research Institute for Breast Cancer Research (to CKLT and PJB) and Canadian Breast Cancer Foundation (CBCF)/Atlantic (to CKLT). ERC received a summer studentship from CBCF/Atlantic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine K. L. Too.

Ethics declarations

Conflict of interest

All the authors declare no conflict-of-interest and have no financial relationship with the organizations that sponsored the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, L.N., Chedrawe, E.R., Barnes, P.J. et al. Prolactin/androgen-inducible carboxypeptidase-D increases with nitrotyrosine and Ki67 for breast cancer progression in vivo, and upregulates progression markers VEGF-C and Runx2 in vitro. Breast Cancer Res Treat 164, 27–40 (2017). https://doi.org/10.1007/s10549-017-4223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4223-7

Keywords

Navigation