Skip to main content

Advertisement

Log in

CXCL13–CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

An Erratum to this article was published on 17 February 2016

Abstract

We investigated the expression of –CXC chemokine ligand 13 (CXCL13) and its receptor –CXC chemokine receptor 5 (CXCR5) in 98 breast cancer (BC) patients with infiltrating duct carcinoma, out of which 56 were found lymph node metastasis (LNM) positive. Interestingly, co-expression of CXCL13 and CXCR5 showed a significant correlation with LNM. Since, epithelial to mesenchymal transition (EMT) is highly associated with metastasis we investigated EMT-inducing potential of CXCL13 in BC cell lines. In CXCL13-stimulated BC cells, expression of various mesenchymal markers (Vimentin, N-cadherin), EMT regulators (Snail, Slug), and matrix metalloproteinase-9 (MMP9) was increased, whereas the expression of epithelial marker E-cadherin was found to be decreased. In addition, expression of receptor activator of nuclear factor kappa-B ligand (RANKL), which is known to regulate MMP9 expression via Src activation, was also significantly increased after CXCL13 stimulation. Using specific protein kinase inhibitors, we confirmed that CXCL13 stimulated EMT and MMP9 expression via RANKL–Src axis in BC cell lines. To further validate this observation, we examined gene expression patterns in primary breast tumors and detected significantly higher expression of various mesenchymal markers and regulators in CXCL13–CXCR5 co-expressing patients. Therefore, this study showed the EMT-inducing potential of CXCL13 as well as demonstrated the prognostic value of CXCL13–CXCR5 co-expression in primary BC. Moreover, CXCL13–CXCR5–RANKL–Src axis may present a therapeutic target in LNM positive BC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AP:

Alkaline phosphatase

BC:

Breast cancer

BCIP:

5-Bromo-4-chloro-3′-indolyphosphate

BSA:

Bovine serum albumin

CXCL13:

–CXC chemokine ligand 13

CXCR5:

–CXC chemokine receptor 5

DAB:

3-3′-Diaminobenzidine

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

DPX:

Distyrene plasticizer and xylene

E-cadh:

E-cadherin

ECM:

Extracellular matrix

EMT:

Epithelial to mesenchymal transition

ER:

Estrogen receptor

FAK:

Focal adhesion kinase

FBS:

Foetal bovine serum

FITC:

Fluorescein isothiocyanate

HRP:

Horse-radish-peroxidase

IDC:

Infiltrating duct carcinoma

IHC:

Immunohistochemistry

LNM:

Lymph node metastasis

MMLV:

Moloney murine leukemia virus

MMP2:

Matrix metalloproteinase-2

MMP9:

Matrix metalloproteinase-9

MRM:

Modified radical mastectomy

NBT:

Nitro-blue tetrazolium

N-cadh:

N-cadherin

p :

Probability

PBS:

Phosphate buffered saline

PR:

Progesterone receptor

p-Src:

Phosphorylated-Src

PVDF:

Polyvinylidine difluoride

RANKL:

Receptor activator of nuclear factor kappa-B ligand

RIPA:

Radio-immunoprecipitation assay

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SGCC & RI:

Saroj Gupta Cancer Centre and Research Institute

SD:

Standard deviation

t-Src:

Total-Src

TNF:

Tumor necrosis factor

WB:

Western blot

References

  1. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  CAS  PubMed  Google Scholar 

  2. Gupta SK, Lysko PG, Pillarisetti K, Ohlstein E, Stadel JM (1998) Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem 273:4282–4287

    Article  CAS  PubMed  Google Scholar 

  3. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  CAS  PubMed  Google Scholar 

  4. Patel J, Channon KM, McNeill E (2013) The downstream regulation of chemokine receptor signaling: implications for atherosclerosis. Mediators Inflamm. doi:10.1155/2013/459520

    Google Scholar 

  5. Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S (2012) G protein-coupled receptors-recent advances. Acta Biochim Pol 59:515–529

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Zlontik A (2004) Chemokines in neoplastic progression. Semin Cancer Biol 14:181–185

    Article  Google Scholar 

  7. Longo-Imedio MI, Longo N, Trevino I, Lazaro P, Sanchez-Mateos P (2005) Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. Int J Cancer 117:861–865

    Article  CAS  PubMed  Google Scholar 

  8. Murphy C, McGurk M, Pettigrew J et al (2005) Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res 11:4117–4127

    Article  CAS  PubMed  Google Scholar 

  9. Keeley EC, Mehrad B, Strieter RM (2010) CXC chemokines in cancer angiogenesis and metastases. Adv Cancer Res 106:91–111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Belperio JA, Keane MP, Arenberg DA et al (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8

    CAS  PubMed  Google Scholar 

  11. Vicari AP, Caux C (2002) Chemokines in cancer. Cytokine Growth Factor Rev 13:143–154

    Article  CAS  PubMed  Google Scholar 

  12. Murakami T, Cardones AR, Hwang ST (2004) Chemokine receptors and melanoma metastasis. J Dermatol Sci 36:71–78

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka T, Bai Z, Srinoulprasert Y, Yang BG, Hayasaka H, Miyasaka M (2005) Chemokines in tumor progression and metastasis. Cancer Sci 96:317–322

    Article  CAS  PubMed  Google Scholar 

  14. Shayan R, Achen MG, Stacker SA (2006) Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis 27:1729–1738

    Article  CAS  PubMed  Google Scholar 

  15. Li YM, Pan Y, Wei Y et al (2004) Up-regulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6:459–469

    Article  CAS  PubMed  Google Scholar 

  16. Bachelder RE, Wendt MA, Mercurio AM (2002) Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62:7203–7206

    CAS  PubMed  Google Scholar 

  17. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer. Nature 410:50–56

    Article  CAS  PubMed  Google Scholar 

  18. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kim M, Koh YJ, Kim KE et al (2010) CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 70:10411–10421

    Article  CAS  PubMed  Google Scholar 

  20. Rhodes LV, Short SP, Neel NF et al (2011) Chemokine receptor CXCR4 mediates estrogen-independent tumorigenesis, metastasis, and resistance to endocrine therapy in human breast cancer. Cancer Res 71:603–613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dhawan P, Richmond A (2002) Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72:9–18

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhou Y, Zhang J, Liu Q et al (2005) The chemokine GRO-alpha (CXCL1) confers increased tumorigenicity to glioma cells. Carcinogenesis 26:2058–2068

    Article  CAS  PubMed  Google Scholar 

  23. Singh S, Singh AP, Sharma B, Owen LB, Singh RK (2010) CXCL8 and its cognate receptors in melanoma progression and metastasis. Future Oncol 6:111–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C, Huang RP (2004) Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer 109:507–515

    Article  CAS  PubMed  Google Scholar 

  25. Meijer J, Zeelenberg IS, Sipos B, Roos E (2006) The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver. Cancer Res 66:9576–9582

    Article  CAS  PubMed  Google Scholar 

  26. Bürkle A, Niedermeier M, Schmitt-Gräff A, Wierda WG, Keating MJ, Burger JA (2007) Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood 110:3316–3325

    Article  PubMed  Google Scholar 

  27. Panse J, Friedrichs K, Marx A et al (2008) Chemokine CXCL13 is overexpressed in the tumor tissue and in the peripheral blood of breast cancer patients. Br J Cancer 99:930–938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Airoldi I, Cocco C, Morandi F, Prigione I, Pistoia V (2008) CXCR5 may be involved in the attraction of human metastatic neuroblastoma cells to the bone marrow. Cancer Immunol Immunother 57:541–548

    Article  CAS  PubMed  Google Scholar 

  29. Razmkhah M, Jaberipour M, Safaei A, Talei AR, Erfani N, Ghaderi A (2012) Chemokine and chemokine receptors: a comparative study between metastatic and non-metastatic lymph nodes in breast cancer patients. Eur Cytokine Netw 23:72–77

    CAS  PubMed  Google Scholar 

  30. El Haibi CP, Sharma PK, Singh R, Johnson PR, Suttles J, Singh S, Lillard JW Jr (2010) PI3Kp110-, Src-, FAK-dependent and DOCK2-independent migration and invasion of CXCL13-stimulated prostate cancer cells. Mol Cancer 9:85

    Article  PubMed Central  PubMed  Google Scholar 

  31. Guarino M (2007) Epithelial-mesenchymal transition and tumor invasion. Int J Biochem Cell Biol 39:2153–2160

    Article  CAS  PubMed  Google Scholar 

  32. Markiewicz A, Ahrends T, Wełnicka-Jaskiewicz M et al (2012) Expression of epithelial to mesenchymal transition-related markers in lymph node metastases as a surrogate for primary tumor metastatic potential in breast cancer. J Transl Med 10:226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  CAS  PubMed  Google Scholar 

  34. Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    Article  CAS  PubMed  Google Scholar 

  35. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  36. Fata JE, Kong YY, Li J et al (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103:41–50

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Teng Y, Zhang Y et al (2012) C-Src-mediated RANKL-induced breast cancer cell migration by activation of the ERK and Akt pathway. Oncol Lett 3:395–400

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Armstrong AP, Miller RE, Jones JC, Zhang J, Keller ET, Dougall WC (2008) RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastatic genes. Prostate 68:92–104

    Article  CAS  PubMed  Google Scholar 

  39. Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  41. Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  CAS  PubMed  Google Scholar 

  42. Sen U, Sankaranarayanan R, Mandal S, Ramanakumar AV, Parkin DM, Siddiqi M (2002) Cancer patterns in eastern India: the first report of the Kolkata cancer registry. Int J Cancer 100:86–91

    Article  CAS  PubMed  Google Scholar 

  43. http://www.breastcancerindia.net/bc/statistics/stati.htm. Accessed 15 Jun 2013

  44. Singh S, Singh R, Singh UP et al (2009) Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines. Int J Cancer 125:2288–2295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Singh S, Singh R, Sharma PK et al (2009) Serum CXCL13 positively correlates with prostatic disease, prostate-specific antigen and mediates prostate cancer cell invasion, integrin clustering and cell adhesion. Cancer Lett 283:29–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Del Grosso F, Coco S, Scaruffi P et al (2011) Role of CXCL13–CXCR5 crosstalk between malignant neuroblastoma cells and Schwannian stromal cells in neuroblastic tumors. Mol Cancer Res 9:815–823

    Article  CAS  PubMed  Google Scholar 

  47. Ebisuno Y, Tanaka T, Kanemitsu N et al (2003) Cutting edge: the B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer’s patches and affects B cell trafficking across high endothelial venules. J Immunol 171:1642–1646

    Article  CAS  PubMed  Google Scholar 

  48. Peinado H, Portillo F, Cano A (2004) Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48:365–375

    Article  CAS  PubMed  Google Scholar 

  49. Dong C, Wu Y, Yao J et al (2012) G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 122:1469–1486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA (2003) MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113:207–219

    Article  CAS  PubMed  Google Scholar 

  51. El-Haibi CP, Singh R, Gupta P, Sharma PK, Greenleaf KN, Singh S, Lillard JW Jr (2012) Antibody microarray analysis of signaling networks regulated by Cxcl13 and Cxcr5 in prostate cancer. J Proteomics Bioinform 5:177–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Zhao Y, Li X, Sun X, Zhang Y, Ren H (2012) EMT phenotype is induced by increased Src kinase activity via Src-mediated caspase-8 phosphorylation. Cell Physiol Biochem 29:341–352

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial supports were made by Department of Science and Technology, Govt. of India (Sanction No.-INT/RFBR/P-82), Council of Scientific and Industrial Research (37/1455/10/EMR-II), and Russian Foundation for Basic Research, Russian Federation (Sanction No.-10-04-92657) for the work and Council of Scientific and Industrial Research—JRF/NET Fellowship Grant [No. 9/028(842)/2011-EMR-I] to Subir Biswas. We thank the patients and their families who participated in this study and also thank the nursing staffs of SGCC & RI. We are thankful to Shravasti Roy, for her help in acquiring histopathological information of the patients, Prakriti Roy and Mayuri Nath for their help in sample collection, Kayum Alam for his help in acquisition of real-time PCR data, Subhadip Kundu and Soumya Chatterjee for initial project design, Soham Mitra, Tarun Keswani, Shauryabrota Dalui for their help in running the experiments.

Conflict of interest

The authors declared that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Bhattacharyya.

Additional information

Suman Sengupta, Sougata Roy Chowdhury, and Samir Jana contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Sengupta, S., Roy Chowdhury, S. et al. CXCL13–CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis. Breast Cancer Res Treat 143, 265–276 (2014). https://doi.org/10.1007/s10549-013-2811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2811-8

Keywords

Navigation