Skip to main content

Advertisement

Log in

Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the effect of molecularly targeted gold nanoparticles (AuNPs) on tumor radiosensitization both in vitro and in vivo. Human Epidermal Growth Factor Receptor-2 (HER-2)-targeted AuNPs (Au–T) were synthesized by conjugating trastuzumab (Herceptin) to 30 nm AuNPs. In vitro, the cytotoxicity of Au-T or non-targeted AuNPs (Au–P) was assessed by γ-H2AX immunofluorescence microscopy for DNA damage and clonogenic survival assays. In vivo, athymic mice bearing subcutaneous MDA-MB-361 xenografts were treated with a single dose of 11 Gy of 100 kVp X-rays 24 h after intratumoral injection of Au–T (~0.8 mg of Au) or no X-radiation. Normal tissue toxicity was determined by hematology or biochemistry parameters. The combination of Au–P or Au–T with X-ray exposure increased the formation of γ-H2AX foci by 1.7 (P = 0.054) and 3.3 (P = 0.024) fold in comparison to X-radiation alone, respectively. The clonogenic survival of cells exposed to Au–T and X-rays was significantly lower from that of cells exposed to X-radiation alone, which translated to a dose enhancement factor of 1.6. In contrast, survival of cells exposed to Au–P and X-rays versus X-radiation alone were not significantly different. In vivo, the combination of Au–T and X-radiation resulted in regression of MDA-MB-361 tumors by 46 % as compared to treatment with X-radiation (16.0 % increase in tumor volume). No significant normal tissue toxicity was observed. Radiosensitization of breast cancer to X-radiation with AuNPs was successfully achieved with an optimized therapeutic strategy of molecular targeting of HER-2 and intratumoral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abed R, Younge D (2008) Surgical management of very large musculoskeletal sarcomas. Ann N Y Acad Sci 1138:77–83

    Article  PubMed  Google Scholar 

  2. Calitchi E, Kirova YM, Otmezguine Y et al (2001) Long-term results of neoadjuvant radiation therapy for breast cancer. Int J Cancer 96:253–259

    Article  PubMed  CAS  Google Scholar 

  3. Darai E, Mosseri V, Hamelin JP et al (1991) Conservative surgery after radiotherapy with preoperative doses in the treatment of breast cancer. Presse Med 20:2144–2148

    PubMed  CAS  Google Scholar 

  4. Chattopadhyay N, Cai Z, Pignol JP et al (2010) Design and characterization of HER-2-targeted gold nanoparticles for enhanced X-radiation treatment of locally advanced breast cancer. Mol Pharm 7:2194–2206

    Article  PubMed  CAS  Google Scholar 

  5. Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459

    Article  PubMed  CAS  Google Scholar 

  6. Huang X, El-Sayed IH, Qian W et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  PubMed  CAS  Google Scholar 

  7. I- Kim, Y- Kang, Lee DS et al (2009) Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Controlled Release 140:55–60

    Article  Google Scholar 

  8. Libutti SK, Paciotti GF, Byrnes AA et al (2010) Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 16:6139–6149

    Article  PubMed  CAS  Google Scholar 

  9. Larson D, Bodell WJ, Ling C et al (1989) Auger electron contribution to bromodeoxyuridine cellular radiosensitization. Int J Radiat Oncol Biol Phys 16:171–176

    Article  PubMed  CAS  Google Scholar 

  10. Hainfeld JF, Dilmanian FA, Slatkin DN et al (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985

    Article  PubMed  CAS  Google Scholar 

  11. Leung MK, Chow JC, Chithrani BD et al (2011) Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38:624–631

    Article  PubMed  CAS  Google Scholar 

  12. Lechtman E, Chattopadhyay N, Cai Z et al (2011) Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol 56:4631–4647

    Article  PubMed  CAS  Google Scholar 

  13. Kassis AI (2008) Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med 38:358–366

    Article  PubMed  Google Scholar 

  14. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  PubMed  CAS  Google Scholar 

  15. Herold DM, Das IJ, Stobbe CC et al (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364

    Article  PubMed  CAS  Google Scholar 

  16. Chattopadhyay N, Fonge H, Cai Z, Scollard D, Lechtman E, Done SJ, Pignol JP, Reilly RM (2012) Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol Pharm 9:2168–2179

    Google Scholar 

  17. McLarty K, Cornelissen B, Scollard DA et al (2009) Associations between the uptake of 111In-DTPA-trastuzumab, HER2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumour xenografts. Eur J Nucl Med Mol Imaging 36:81–93

    Article  PubMed  CAS  Google Scholar 

  18. Clarkson R, Lindsay PE, Ansell S et al (2011) Characterization of image quality and image-guidance performance of a preclinical microirradiator. Med Phys 38:845–856

    Article  PubMed  CAS  Google Scholar 

  19. Ma CM, Coffey CW, DeWerd LA et al (2001) AAPM protocol for 40–300 kV X-ray beam dosimetry in radiotherapy and radiobiology. Med Phys 28:868–893

    Article  PubMed  CAS  Google Scholar 

  20. Butson MJ, Cheung T, Yu PK et al (2009) Dose and absorption spectra response of EBT2 Gafchromic film to high energy X-rays. Australas Phys Eng Sci Med 32:196–202

    Article  PubMed  CAS  Google Scholar 

  21. Cai Z, Pan X, Hunting D et al (2003) Dosimetry of ultrasoft X-rays (1.5 keV AlKα) using radiochromatic films and colour scanner. Phys Med Biol 48:4111–4124

    Article  PubMed  Google Scholar 

  22. Gribel BF, Gribel MN, Frazao DC et al (2011) Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod 81:26–35

    Article  PubMed  Google Scholar 

  23. Cai Z, Chattopadhyay N, Liu WJ et al (2011) Optimized digital counting colonies of clonogenic assays using ImageJ software and customized macros: comparison with manual counting. Int J Radiat Biol 87:1135–1146

    Article  PubMed  CAS  Google Scholar 

  24. Cai Z, Vallis KA, Reilly RM (2009) Computational analysis of the number, area and density of γ-H2AX foci in breast cancer cells exposed to 111In-DTPA-hEGF or γ-rays using Image-J software. Int J Radiat Biol 85:262–271

    Article  PubMed  CAS  Google Scholar 

  25. Chow JC, Leung MK, Lindsay PE et al (2010) Dosimetric variation due to the photon beam energy in the small-animal irradiation: a Monte Carlo study. Med Phys 37:5322–5329

    Article  PubMed  CAS  Google Scholar 

  26. Meesungnoen J, J- Jay-Gerin, Filali-Mouhim A et al (2002) Low-energy electron penetration range in liquid water. Radiat Res 158:657–660

    Article  PubMed  CAS  Google Scholar 

  27. Cai Z, Pignol JP, Chan C et al (2010) Cellular dosimetry of 111In using monte carlo N-particle computer code: comparison with analytic methods and correlation with in vitro cytotoxicity. J Nucl Med 51:462–470

    Article  PubMed  Google Scholar 

  28. Kong T, Zeng J, Wang X et al (2008) Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4:1537–1543

    Article  PubMed  CAS  Google Scholar 

  29. Chithrani DB, Jelveh S, Jalali F et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728

    Article  PubMed  CAS  Google Scholar 

  30. Kassis AI, Adelstein SJ (2005) Radiobiologic principles in radionuclide therapy. J Nucl Med 46(Suppl 1):4S–12S

    PubMed  Google Scholar 

  31. Hainfeld JF, Dilmanian FA, Zhong Z et al (2010) Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55:3045–3059

    Article  PubMed  CAS  Google Scholar 

  32. Hebert EM, Debouttiere PJ, Lepage M et al (2010) Preferential tumour accumulation of gold nanoparticles, visualised by Magnetic Resonance Imaging: radiosensitization studies in vivo and in vitro. Int J Radiat Biol 86:692–700

    Article  PubMed  CAS  Google Scholar 

  33. Huang X, Peng X, Wang Y et al (2010) A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4:5887–5896

    Article  PubMed  CAS  Google Scholar 

  34. Glazer ES, Zhu C, Hamir AN et al (2011) Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology 5:459–468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Canadian Breast Cancer Research Alliance (Grant 019374) to R.M.R and J.-P.P. N.C. is supported by a Vanier Canada Graduate Scholarship from the Canadian Institutes of Health Research, a predoctoral fellowship from the U.S Army Department of Defense Breast Cancer Research Program (W81XWH-08-1-0519, P00002), and a predoctoral fellowship from the Connaught Fund, University of Toronto. The authors thank Dr. Patricia Lindsay for her assistance at the STTARR Imaging Facility, University of Toronto. The authors thank Yi Daniel Zhou (McGill University) for his assistance in counting colonies (clonogenic assay) and recording tumor size measurements.

Conflict of interest

The authors declare no conflict of interest with regard to the submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond M. Reilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, N., Cai, Z., Kwon, Y.L. et al. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat 137, 81–91 (2013). https://doi.org/10.1007/s10549-012-2338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2338-4

Keywords

Navigation