Skip to main content

Advertisement

Log in

Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We investigated the role of human natural killer (NK) cells in the peripheral blood (PB) and liver in controlling breast cancer. The proportion of NK cells among liver mononuclear cells was significantly higher than among PB mononuclear cells. Liver NK cells inductively expressed higher levels of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) than PB NK cells in response to interleukin-2 (IL-2). Liver NK cells displayed higher cytotoxicity against various breast cancer cell lines (MDA-MB231, MDA-MB453, MDA-MB468, and MCF-7) after IL-2 stimulation than did PB NK cells. Anti-HER2 monoclonal antibody (mAb) promoted the cytotoxicity of both the types of NK cells toward HER2-expressing cell lines. All breast cancer cell lines highly expressed death-inducing TRAIL receptors, death receptor 4, but did not express death-inhibitory receptors (DcR1 and DcR2). Both PB and liver NK cell-induced cytotoxicity was inhibited partially by anti-TRAIL mAb and more profoundly by the combination of anti-TRAIL mAb and concanamycin A, indicating that TRAIL and perforin are involved. IL-2-stimulated liver and PB NK cells exhibited upregulated expression of CXCR3, which bind to the chemokines CXCL9, CXCL10, and CXCL11 secreted by breast cancer cells. We also found that IFN-γ promoted the production of CXCL10 from breast cancer cells. The results of this study show that IFN-γ secreted from NK cells likely promotes the production of CXCL10 from breast cancer cells, which in turn accelerates the migration of CXCR3-expressing NK cells into the tumor site. These findings suggest the possibility of a therapeutic approach by either activation of endogenous PB and liver NK cells or adoptive transfer of in vitro-activated autologous NK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

NK:

Natural killer

TRAIL:

TNF-related apoptosis-inducing ligand

PBMC:

Peripheral blood mononuclear cell

LMNC:

Liver mononuclear cell

mAbs:

Monoclonal antibodies

References

  1. Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  PubMed  CAS  Google Scholar 

  2. Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76(12):2421–2438

    PubMed  CAS  Google Scholar 

  3. Cullen SP, Martin SJ (2008) Mechanisms of granule-dependent killing. Cell Death Differ 15(2):251–262

    Article  PubMed  CAS  Google Scholar 

  4. Pardo J, Aguilo JI, Anel A, Martin P, Joeckel L, Borner C et al (2009) The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation. Microbes Infect 11(4):452–459

    Article  PubMed  CAS  Google Scholar 

  5. Sjostrom-Mattson J, Von Boguslawski K, Bengtsson NO, Mjaaland I, Salmenkivi K, Blomqvist C (2009) The expression of p53, bcl-2, bax, fas and fasL in the primary tumour and lymph node metastases of breast cancer. Acta Oncol 48(8):1137–1143

    Article  PubMed  CAS  Google Scholar 

  6. Lahiry L, Saha B, Chakraborty J, Adhikary A, Hossain DM et al (2010) Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis 31(2):259–268

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi M, Ogasawara K, Takeda K, Hashimoto W, Sakihara H, Kumagai K et al (1996) LPS induces NK1.1+ alpha beta T cells with potent cytotoxicity in the liver of mice via production of IL-12 from Kupffer cells. J Immunol 156(7):2436–2442

    PubMed  CAS  Google Scholar 

  8. Crispe IN, Mehal WZ (1996) Strange brew: T cells in the liver. Immunol Today 17(11):522–525

    Article  PubMed  CAS  Google Scholar 

  9. Seki S, Habu Y, Kawamura T, Takeda K, Dobashi H, Ohkawa T et al (2000) The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses. Immunol Rev 174:35–46

    Article  PubMed  CAS  Google Scholar 

  10. Ishiyama K, Ohdan H, Mitsuta H, Arihiro K, Asahara T (2006) Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 43(2):362–372

    Article  PubMed  CAS  Google Scholar 

  11. Ochi M, Ohdan H, Mitsuta H, Onoe T, Tokita D, Hara H et al (2004) Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 39(5):1321–1331

    Article  PubMed  CAS  Google Scholar 

  12. Rahman M, Davis SR, Pumphrey JG, Bao J, Nau MM, Meltzer PS et al (2009) TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat 113(2):217–230

    Article  PubMed  Google Scholar 

  13. Dastjerdi K, Tabar GH, Dehghani H, Haghparast A (2011) Generation of an enriched pool of DNA aptamers for an HER2-overexpressing cell line selected by cell SELEX. Biotechnol Appl Biochem 58(4):226–230

    Article  PubMed  CAS  Google Scholar 

  14. Kataoka T, Shinohara N, Takayama H, Takaku K, Kondo S, Yonehara S et al (1996) Concanamycin A, a powerful tool for characterization and estimation of contribution of perforin- and Fas-based lytic pathways in cell-mediated cytotoxicity. J Immunol 156(10):3678–3686

    PubMed  CAS  Google Scholar 

  15. Kawarabayashi N, Seki S, Hatsuse K, Ohkawa T, Koike Y, Aihara T et al (2000) Decrease of CD56(+)T cells and natural killer cells in cirrhotic livers with hepatitis C may be involved in their susceptibility to hepatocellular carcinoma. Hepatology 32(5):962–969

    Article  PubMed  CAS  Google Scholar 

  16. Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276(5309):111–113

    Article  PubMed  CAS  Google Scholar 

  17. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277(5327):818–821

    Article  PubMed  CAS  Google Scholar 

  18. Wallin RP, Screpanti V, Michaelsson J, Grandien A, Ljunggren HG (2003) Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol 33(10):2727–2735

    Article  PubMed  CAS  Google Scholar 

  19. Salazar-Mather TP, Orange JS, Biron CA (1998) Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1alpha (MIP-1alpha)-dependent pathways. J Exp Med 187(1):1–14

    Article  PubMed  CAS  Google Scholar 

  20. Guimond MJ, Wang B, Croy BA (1998) Engraftment of bone marrow from severe combined immunodeficient (SCID) mice reverses the reproductive deficits in natural killer cell-deficient tg epsilon 26 mice. J Exp Med 187(2):217–223

    Article  PubMed  CAS  Google Scholar 

  21. Hedrick JA, Saylor V, Figueroa D, Mizoue L, Xu Y, Menon S et al (1997) Lymphotactin is produced by NK cells and attracts both NK cells and T cells in vivo. J Immunol 158(4):1533–1540

    PubMed  CAS  Google Scholar 

  22. Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–215

    Article  PubMed  CAS  Google Scholar 

  23. Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA, Ritz J (1990) Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med 171(5):1509–1526

    Article  PubMed  CAS  Google Scholar 

  24. Nagler A, Lanier LL, Phillips JH (1990) Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo. J Exp Med 171(5):1527–1533

    Article  PubMed  CAS  Google Scholar 

  25. Caligiuri MA, Murray C, Robertson MJ, Wang E, Cochran K, Cameron C et al (1993) Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest 91(1):123–132

    Article  PubMed  CAS  Google Scholar 

  26. Baume DM, Robertson MJ, Levine H, Manley TJ, Schow PW, Ritz J (1992) Differential responses to interleukin 2 define functionally distinct subsets of human natural killer cells. Eur J Immunol 22(1):1–6

    Article  PubMed  CAS  Google Scholar 

  27. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319(6055):675–678

    Article  PubMed  CAS  Google Scholar 

  28. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–682

    Article  PubMed  CAS  Google Scholar 

  29. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y et al (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364(6440):806–809

    Article  PubMed  CAS  Google Scholar 

  30. Nagata S (1997) Apoptosis by death factor. Cell 88(3):355–365

    Article  PubMed  CAS  Google Scholar 

  31. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104(2):155–162

    Article  PubMed  CAS  Google Scholar 

  32. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith T, Kubin M et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163

    Article  PubMed  CAS  Google Scholar 

  33. Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98(9):2603–2614

    Article  PubMed  CAS  Google Scholar 

  34. Nagler A, Lanier LL, Cwirla S, Phillips JH (1989) Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 143(10):3183–3191

    PubMed  CAS  Google Scholar 

  35. Ishigami S, Natsugome S, Tokuda K, Nakajo A, Xiangming Che, Iwashige H et al (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88(3):577–583

    Article  PubMed  CAS  Google Scholar 

  36. Villegas FR, Santiago C, Villarrubia VG, Jimenez R, Chillon MJ, Jareno J et al (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35(1):23–28

    Article  PubMed  Google Scholar 

  37. Hyakudomi M, Matsubara T, Hyakudomi R, Yamamoto T, Kinugasa S, Yamanoi A et al (2008) Increased expression of fractalkine is correlated with a better prognosis and an increased number of both CD8+ T cells and natural killer cells in gastric adenocarcinoma. Ann Surg Oncol 15(6):1775–1782

    Article  PubMed  Google Scholar 

  38. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057

    Article  PubMed  CAS  Google Scholar 

  39. Klingemann HG, Martinson J (2004) Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 6(1):15–22

    Article  PubMed  Google Scholar 

  40. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316(15):889–897

    Article  PubMed  CAS  Google Scholar 

  41. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M et al (1993) Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 178(4):1223–1230

    Article  PubMed  CAS  Google Scholar 

  42. Takeda K, Hayakawa Y, Smyth ML, Kayagaki N, Yamaguchi N, Kakuta S et al (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 1:94–100

    Article  Google Scholar 

  43. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M et al (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191(5):771–780

    Article  PubMed  CAS  Google Scholar 

  44. Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N et al (2001) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 193(6):661–670

    Article  PubMed  CAS  Google Scholar 

  45. Talmadge JE, Phillips H, Schindler J, Tribble H, Pennigton R (1987) Systematic preclinical study on the therapeutic properties of recombinant human interleukin 2 for the treatment of metastatic disease. Cancer Res 47(21):5725–5732

    PubMed  CAS  Google Scholar 

  46. Helms MW, Prescher JA, Cao YA, Schaffert S, Contag CH (2010) IL-12 enhances efficacy and shortens enrichment time in cytokine-induced killer cell immunotherapy. Cancer Immunol Immunother 59(9):1325–1334

    Article  PubMed  CAS  Google Scholar 

  47. Pegram HJ, Haynes NM, Smyth MJ, Kershaw MH, Darcy PK (2010) Characterizing the anti-tumor function of adoptively transferred NK cells in vivo. Cancer Immunol Immunother 59(8):1235–1246

    Article  PubMed  Google Scholar 

  48. Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN et al (2010) A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 59(12):1781–1789

    Article  PubMed  Google Scholar 

  49. Milani V, Stangl S, Issels R, Gehrmann M, Wagner B, Hube K (2009) Anti-tumor activity of patient-derived NK cells after cell-based immunotherapy—a case report. J Transl Med 7:50

    Article  PubMed  Google Scholar 

  50. Knorr DA, Kaufman DS (2010) Pluripotent stem cell-derived natural killer cells for cancer therapy. Transl Res 156(3):147–154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Kohei Ishiyama, and Masahiro Ohira for their advice and encouragement and Drs. Doskali Marlen, Yuka Igarashi and Nabin Basnet, and Ms. Yuko Ishida and Ms. Midori Kiyokawa for their expert technical assistance. This work was supported by a Grant-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Science and a Grant-in-Aid for the Research on Hepatitis and BSE from the Japanese Ministry of Health, Labour and Welfare.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Ohdan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

The results of 4 other similar experiments using liver NK cells to that shown in Fig. 7. Isolated liver NK cell populations were used as effector cells (E) in assays of cytotoxicity against the target (T) MDA-MB231 human breast cancer cell line. Cytotoxicity assays were performed at an E/T ratio of 10:1, 5:1, or 2.5:1 in the presence or absence of anti-TRAIL (N2B2) mAb (10 μg/mL) and/or concanamycin A (CMA) (50 nmol/L). Data are the average ± SEM values from triplicate sample. Error bars not shown appear within the data point. (TIFF 103 kb)

Fig. 2

The results of 4 other similar experiments using PB NK cells to that shown in Fig. 7. Isolated PB NK cell populations were used as effector cells (E) in assays of cytotoxicity against the target (T) MDA-MB231 human breast cancer cell line. Cytotoxicity assays were performed at an E/T ratio of 10:1, 5:1, or 2.5:1 in the presence or absence of anti-TRAIL (N2B2) mAb (10 μg/mL) and/or concanamycin A (CMA) (50 nmol/L). Data are the average ± SEM values from triplicate sample. Error bars not shown appear within the data point. (TIFF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajitani, K., Tanaka, Y., Arihiro, K. et al. Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells. Breast Cancer Res Treat 134, 139–155 (2012). https://doi.org/10.1007/s10549-011-1944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1944-x

Keywords

Navigation