Skip to main content

Advertisement

Log in

Evaluation of associations between common variation in mitotic regulatory pathways and risk of overall and high grade breast cancer

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Mitotic regulatory pathways insure proper timing of mitotic entry, sister chromatid cohesion and separation, and cytokinesis. Disruption of this process results in inappropriate chromosome segregation and aneuploidy, and appears to contribute to cancer. Specifically, disregulation and somatic mutation of mitotic regulators has been observed in human cancers, and overexpression of mitotic regulators is common in aggressive and late stage tumors. However, the role of germline variation in mitotic pathways and risk of cancer is not well understood. We tested 1,084 haplotype-tagging and functional variants from 164 genes in mitotic regulatory pathways in 791 Caucasian women with breast cancer and 843 healthy controls for association with risk of overall and high grade breast cancer. Sixty-one single nucleotide polymorphisms (SNPs) from 40 genes were associated (P < 0.05) with risk of breast cancer in a log-additive model. In addition, 60 SNPs were associated (P < 0.05) with risk of high grade breast cancer. However, none of these associations were significant after Bonferroni correction for multiple testing. In gene-level analyses, CDC25C, SCC1/RAD21, TLK2, and SMC6L1 were associated (P < 0.05) with overall breast cancer risk, CDC6, CDC27, SUMO3, RASSF1, KIF2, and CDC14A were associated with high grade breast cancer risk, and EIF3S10 and CDC25A were associated with both. Further investigation in breast and other cancers are needed to understand the influence of inherited variation in mitotic genes on tumor grade and cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP (1998) Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosom Cancer 21(3):177–184

    Article  PubMed  CAS  Google Scholar 

  2. Mendelin J, Grayson M, Wallis T, Visscher DW (1999) Analysis of chromosome aneuploidy in breast carcinoma progression by using fluorescence in situ hybridization. Lab Invest 79(4):387–393

    PubMed  CAS  Google Scholar 

  3. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20(6):R285–R295

    Article  PubMed  CAS  Google Scholar 

  4. Molinari M (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 33(5):261–274

    Article  PubMed  CAS  Google Scholar 

  5. Baker DJ, Jin F, Jeganathan KB, van Deursen JM (2009) Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 16(6):475–486

    Article  PubMed  CAS  Google Scholar 

  6. Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, Benezra R (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11(1):9–23

    Article  PubMed  CAS  Google Scholar 

  7. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437(7061):1043–1047

    Article  PubMed  CAS  Google Scholar 

  8. Hawkins GA, Mychaleckyj JC, Zheng SL, Faith DA, Kelly B, Isaacs SD, Wiley KE, Chang BL, Ewing CM, Bujnovszky P, Bleecker ER, Walsh PC, Meyers DA, Isaacs WB, Xu J (2002) Germline sequence variants of the LZTS1 gene are associated with prostate cancer risk. Cancer Genet Cytogenet 137(1):1–7

    Article  PubMed  CAS  Google Scholar 

  9. Guo Y, Zhang X, Yang M, Miao X, Shi Y, Yao J, Tan W, Sun T, Zhao D, Yu D, Liu J, Lin D (2010) Functional evaluation of missense variations in the human MAD1L1 and MAD2L1 genes and their impact on susceptibility to lung cancer. J Med Genet 47(9):616–622

    Article  PubMed  CAS  Google Scholar 

  10. Milam MR, Gu J, Yang H, Celestino J, Wu W, Horwitz IB, Lacour RA, Westin SN, Gershenson DM, Wu X, Lu KH (2007) STK15 F31I polymorphism is associated with increased uterine cancer risk: a pilot study. Gynecol Oncol 107(1):71–74

    Article  PubMed  CAS  Google Scholar 

  11. Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian M, Pooley KA, Luben R, Eccles D, Evans DG, Fletcher O, Johnson N, dos Santos Silva I, Peto J, Stratton MR, Rahman N, Jacobs K, Prentice R, Anderson GL, Rajkovic A, Curb JD, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Diver WR, Bojesen S, Nordestgaard BG, Flyger H, Dork T, Schurmann P, Hillemanns P, Karstens JH, Bogdanova NV, Antonenkova NN, Zalutsky IV, Bermisheva M, Fedorova S, Khusnutdinova E, Kang D, Yoo KY, Noh DY, Ahn SH, Devilee P, van Asperen CJ, Tollenaar RA, Seynaeve C, Garcia-Closas M, Lissowska J, Brinton L, Peplonska B, Nevanlinna H, Heikkinen T, Aittomaki K, Blomqvist C, Hopper JL, Southey MC, Smith L, Spurdle AB, Schmidt MK, Broeks A, van Hien RR, Cornelissen S, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Schmutzler RK, Burwinkel B, Bartram CR, Meindl A, Brauch H, Justenhoven C, Hamann U, Chang-Claude J, Hein R, Wang-Gohrke S, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Kataja V, Olson JE, Wang X, Fredericksen Z, Giles GG, Severi G, Baglietto L, English DR, Hankinson SE, Cox DG, Kraft P, Vatten LJ, Hveem K, Kumle M, Sigurdson A, Doody M, Bhatti P, Alexander BH, Hooning MJ, van den Ouweland AM, Oldenburg RA, Schutte M, Hall P, Czene K, Liu J, Li Y, Cox A, Elliott G, Brock I, Reed MW, Shen CY, Yu JC, Hsu GC, Chen ST, Anton-Culver H, Ziogas A, Andrulis IL, Knight JA, Beesley J, Goode EL, Couch F, Chenevix-Trench G, Hoover RN, Ponder BA, Hunter DJ, Pharoah PD, Dunning AM, Chanock SJ, Easton DF (2009) Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41 (5):585–590

  12. Ewart-Toland A, Dai Q, Gao YT, Nagase H, Dunlop MG, Farrington SM, Barnetson RA, Anton-Culver H, Peel D, Ziogas A, Lin D, Miao X, Sun T, Ostrander EA, Stanford JL, Langlois M, Chan JM, Yuan J, Harris CC, Bowman ED, Clayman GL, Lippman SM, Lee JJ, Zheng W, Balmain A (2005) Aurora-A/STK15 T+91A is a general low penetrance cancer susceptibility gene: a meta-analysis of multiple cancer types. Carcinogenesis 26(8):1368–1373

    Article  PubMed  CAS  Google Scholar 

  13. Gazouli M, Tzanakis N, Rallis G, Theodoropoulos G, Papaconstantinou I, Kostakis A, Anagnou NP, Nikiteas N (2009) Survivin-31G/C promoter polymorphism and sporadic colorectal cancer. Int J Colorectal Dis 24(2):145–150

    Article  PubMed  Google Scholar 

  14. Jang JS, Kim KM, Kang KH, Choi JE, Lee WK, Kim CH, Kang YM, Kam S, Kim IS, Jun JE, Jung TH, Park JY (2008) Polymorphisms in the survivin gene and the risk of lung cancer. Lung Cancer 60(1):31–39

    Article  PubMed  Google Scholar 

  15. Kelemen LE, Wang X, Fredericksen ZS, Pankratz VS, Pharoah PD, Ahmed S, Dunning AM, Easton DF, Vierkant RA, Cerhan JR, Goode EL, Olson JE, Couch FJ (2009) Genetic variation in the chromosome 17q23 amplicon and breast cancer risk. Cancer Epidemiol Biomarkers Prev 18(6):1864–1868

    Article  PubMed  CAS  Google Scholar 

  16. Ignatiadis M, Sotiriou C (2008) Understanding the molecular basis of histologic grade. Pathobiology 75(2):104–111

    Article  PubMed  CAS  Google Scholar 

  17. Outwin EA, Irmisch A, Murray JM, O’Connell MJ (2009) Smc5-Smc6-dependent removal of cohesin from mitotic chromosomes. Mol Cell Biol 29(16):4363–4375

    Article  PubMed  CAS  Google Scholar 

  18. Holt LJ, Krutchinsky AN, Morgan DO (2008) Positive feedback sharpens the anaphase switch. Nature 454(7202):353–357

    Article  PubMed  CAS  Google Scholar 

  19. Park KH, Choi SE, Eom M, Kang Y (2005) Downregulation of the anaphase-promoting complex (APC)7 in invasive ductal carcinomas of the breast and its clinicopathologic relationships. Breast Cancer Res 7(2):R238–R247

    Article  PubMed  CAS  Google Scholar 

  20. Olson JE, Wang X, Pankratz VS, Fredericksen ZS, Vachon CM, Vierkant RA, Cerhan JR, Couch FJ (2011) Centrosome-related genes, genetic variation, and risk of breast cancer. Breast Cancer Res Treat 125(1):221–228

    Article  PubMed  CAS  Google Scholar 

  21. Olson JE, Wang X, Goode EL, Pankratz VS, Fredericksen ZS, Vierkant RA, Pharoah PD, Cerhan JR, Couch FJ (2010) Variation in genes required for normal mitosis and risk of breast cancer. Breast Cancer Res Treat 119(2):423–430

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Fredericksen ZS, Vierkant RA, Kosel ML, Pankratz VS, Cerhan JR, Justenhoven C, Brauch H, Olson JE, Couch FJ (2010) Association of genetic variation in mitotic kinases with breast cancer risk. Breast Cancer Res Treat 119(2):453–462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the NIH grant CA122340 and a Specialized Program of Research Excellence (SPORE) in Breast Cancer, CA116201. KNS is a Mayo Cancer Genetic Epidemiology Training Program (CA92049-03) fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fergus J. Couch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, K.N., Wang, X., Fredericksen, Z. et al. Evaluation of associations between common variation in mitotic regulatory pathways and risk of overall and high grade breast cancer. Breast Cancer Res Treat 129, 617–622 (2011). https://doi.org/10.1007/s10549-011-1587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1587-y

Keywords

Navigation