Skip to main content

Advertisement

Log in

Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Tamoxifen (TAM) resistance is a serious clinical problem in the treatment of breast cancer. Here, we found that S-adenosylmethionine (SAM) and DNA methyltransferase1 (DNMT1) expression are up-regulated in TAM-resistant breast cancer (TAMR-MCF-7) cells. We further focused on whether increased SAM with DNMT1 overexpression in TAMR-MCF-7 cells lead to aberrant methylation of the PTEN gene promoter and its therapeutic potential. Methylation-specific PCR analyses revealed that two sites within the PTEN promoters were methylated in TAMR-MCF-7 cells, which resulted in down-regulation of PTEN expression and increase in Akt phosphorylation. Both the loss of PTEN expression and the increased Akt phosphorylation in TAMR-MCF-7 cells were completely reversed by 5-aza-2′-deoxycytidine (5-Aza), a DNMT inhibitor. 5-Aza inhibited the basal cell proliferation rate of TAMR-MCF-7 cells and intraperitoneal injection of 5-Aza significantly suppressed TAMR-MCF-7 tumor growth in a xenograft study. Immunohistochemistry showed that PTEN expression in TAM-resistant human breast cancer tissues was lower than in TAM-responsive cases. These results suggest that methylation of the PTEN promoter related to both SAM increase and DNMT1 activation contributes to persistent Akt activation and are potential therapeutic targets for reversing TAM resistance in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

5-Aza:

5-Aza-2′-deoxycytidine

BRCA1 :

Breast cancer 1

DMEM:

Dulbecco’s modified Eagle’s medium

DNMT:

DNA methyltranferase

ERα :

Estrogen receptor α

GSTP1 :

Glutathione S-transferase P

MAT:

Methionine adenosyltransferase

PCNA:

Proliferating cell nuclear antigen

PI3K:

Phosphoinositide 3-kinases

PTEN:

Phosphatase and tensin homolog

P16INK4A :

Cyclin-dependent kinase inhibitor 2A

SAM:

S-adenosylmethionine

TAM:

Tamoxifen

TIMP-3:

Metalloproteinase inhibitor 3

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  1. Mueller SO, Clark JA, Mvers PH, Korach KS (2002) Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinol 143:2357–2365

    Article  CAS  Google Scholar 

  2. Petrangeli E, Lubrano C, Ortolani F et al (1994) Estrogen receptors: new perspectives in breast cancer management. J Steroid Biochem Mol Biol 49:327–331

    Article  PubMed  CAS  Google Scholar 

  3. Rose C, Thorpe SM, Andersen KW, Pedersen BV, Mouridsen HT, Blichert-Toft M, Rasmussen BB (1985) Beneficial effect of adjuvant tamoxifen therapy in primary breast cancer patients with high oestrogen receptor values. Lancet 1:16–19

    Article  PubMed  CAS  Google Scholar 

  4. Eiermann W, Paepke S, Appfelstaedt J, Llombart-Cussac A, Eremin J, Vinholes J, Mauriac L, Ellis M, Lassus M, Chaudri-Ross HA, Dugan M, Borgs M (2001) Preoperative treatment of postmenopausal breast cancer patients with letrozole: a randomized double-blind multicenter study. Ann Oncol 12:1527–1532

    Article  PubMed  CAS  Google Scholar 

  5. Clemons M, Danson S, Howell A (2002) Tamoxifen (“Nolvadex”): a review. Cancer Treat Rev 28:165–180

    Article  PubMed  CAS  Google Scholar 

  6. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer cell and strategies for combating resistance. Nat Rev Cancer 2:101–112

    Article  PubMed  Google Scholar 

  7. Osborne CK, Fuqua SA (1994) Mechanism of tamoxifen resistance. Breast Cancer Res Treat 32:49–55

    Article  PubMed  CAS  Google Scholar 

  8. Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI (2003) Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediated an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinol 144:1032–1044

    Article  CAS  Google Scholar 

  9. Choi HK, Yang JW, Roh SH, Han CY, Kang KW (2007) Induction of multidrug resistance associated protein 2 in tamoxifen-resistant breast cancer cells. Endocr Relat Cancer 14:293–303

    Article  PubMed  CAS  Google Scholar 

  10. Lu SC, Mato JM (2005) Role of methionine adenosyltransferase and SAMe in alcohol-associated liver cancer. Alcohol 35:227–234

    Article  PubMed  CAS  Google Scholar 

  11. Mato JM, Alvarez L, Ortiz P, Pajares MA (1997) S-adenosylmethionine synthesis: molecular mechanism and clinical implications. Pharmacol Ther 73:265–280

    Article  PubMed  CAS  Google Scholar 

  12. Mato JM, Lu SC (2007) Role of S-adenosyl-l-methionine in liver health and injury. Hepatology 45:1306–1312

    Article  PubMed  CAS  Google Scholar 

  13. Lu SC, Mato JM (2008) S-Adenosylmethionine in cell growth, apoptosis and liver cancer. J Gastroenterol Hepatol 23:S73–S77

    Article  PubMed  CAS  Google Scholar 

  14. Mudd SH, Poole JR (1975) Labile methyl balances for normal humans of various dietary regimens. Metabolism 24:721–735

    Article  PubMed  CAS  Google Scholar 

  15. Tobena R, Horikawa S, Calvo V, Alemany S (1996) Interleukin-2 induces-S-adenosyl-l-methionine synthetase gene expression during T lymphocyte activation. Biochem J 319:929–933

    PubMed  CAS  Google Scholar 

  16. Ansorena E, García-Trevijano ER, Martínez-Chantar ML, Huang ZZ, Chen L, Mato JM, Iraburu M, Lu SC, Avila MA (2002) S-adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Hepatology 35(2):274–280

    Article  PubMed  CAS  Google Scholar 

  17. Zhao Y, Li JS, Guo MZ, Feng BS, Zhang JP (2010) Inhibitory effect of S-adenosylmethionine on the growth of human gastric cancer cells in vivo and in vitro. Chin J Cancer 29:752–760

    PubMed  CAS  Google Scholar 

  18. Chen H, Xia M, Lin M, Yang H, Kuhlenkamp J, Li T, Sodir NM, Chen YH, Josef-Lenz H, Laird PW, Clarke S, Mato JM, Lu SC (2007) Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells. Gastroenterology 133:207–218

    Article  PubMed  CAS  Google Scholar 

  19. Luzhna L, Kovalchuk O (2010) Modulation of DNA methylation levels sensitizes doxorubicin-resistant breast adenocarcinoma cells to radiation-induced apoptosis. Biochem Biophys Res Commun 392:113–117

    Article  PubMed  CAS  Google Scholar 

  20. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  PubMed  CAS  Google Scholar 

  21. Pecorino L (2005) Molecular biology of cancer. Chap 3: Regulation of gene expression. Oxford University Press, New York

  22. Vanyushin BF, Tkacheva SG, Belozersky AN (1970) Rare bases in animal DNA. Nature 225:948–949

    Article  PubMed  CAS  Google Scholar 

  23. Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90:11995–11999

    Article  PubMed  CAS  Google Scholar 

  24. Bird AP (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–100

    Article  PubMed  CAS  Google Scholar 

  25. Yang H, Huang ZZ, Wang J, Lu SC (2001) The role of c-Myb and Sp1 in the upregulation of methionine adenosyltransferase 2A gene expression in human hepatocelluar carcinoma. FASEB J 15:1507–1516

    Article  PubMed  CAS  Google Scholar 

  26. Rhee I, Bachman KE, Park BH, Jair KW et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nat 416:552–556

    Article  CAS  Google Scholar 

  27. Dahia PL (2000) PTEN, a unique tumor suppressor gene. Endocr Relat Cancer 7:115–129

    Article  PubMed  CAS  Google Scholar 

  28. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M (2004) PI3K/AKT signalling pathway and cancer. Cancer Treat Rev 30:193–204

    Article  PubMed  Google Scholar 

  29. Samuels Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18:77–82

    Article  PubMed  CAS  Google Scholar 

  30. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/AKT-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    Article  PubMed  CAS  Google Scholar 

  31. Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, Das S (2001) PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 91:22–26

    Article  PubMed  CAS  Google Scholar 

  32. Mir Mohammad Sadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T, Hengge UR (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66:6546–6552

    Article  CAS  Google Scholar 

  33. Soria JC, Lee HY, Khuri FR et al (2002) Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res 8:1178–1184

    PubMed  CAS  Google Scholar 

  34. Roman-Gomez J, Jimenez-Velasco A, Torres A et al (2004) Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104:2492–2498

    Article  PubMed  CAS  Google Scholar 

  35. Wiencke JK, Zheng S, Stokoe D et al (2007) Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol 9:271–279

    Article  PubMed  CAS  Google Scholar 

  36. Cairns P, Okami K, King P, Bonacum J, Ahrendt S, Wu L, Mao L, Jen J, Sidransky D (1997) Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57:4997–5000

    PubMed  CAS  Google Scholar 

  37. Kang GH, Lee S, Kim WH, Lee HW, Kim JC, Rhyu MG, Ro JY (2002) Epstein-Barr viruspositive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 160:787–794

    Article  PubMed  CAS  Google Scholar 

  38. Furuta J, Umebayashi Y, Miyamoto K, Kikuchi K, Otsuka F, Sugimura T, Ushijima T (2004) Promoter methylation profiling of 30 genes in human malignant melanoma. Cancer Sci 95:962–968

    Article  PubMed  CAS  Google Scholar 

  39. Hou P, Ji M, Xing M (2008) Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/Akt signaling pathway in thyroid tumors. Cancer 113:2440–2447

    Article  PubMed  CAS  Google Scholar 

  40. Khan S, Kumagai T, Vora J, Bose N, Sehgal I, Koeffler PH, Bose S (2004) Pten promoter is methylated in a proportion invasive breast cancer. Int J Cancer 112:407–410

    Article  PubMed  CAS  Google Scholar 

  41. Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A, Ishikawa S, Morikawa T, Nakaya T, Sakatani T, Takada K, Fukayama M (2009) Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermythylation of PTEN gene in gastric carcinoma. Cancer Res 69:2766–2774

    Article  PubMed  CAS  Google Scholar 

  42. She QB, Nagao I, Hayakawa T, Tsuge H (1994) A simple HPLC method for the determination of S-adenosylmethionine and S-adenosylhomocysteine in rat tissues: the effect of vitamin B6 deficiency on these concentrations in rat liver. Biochem Biophys Res Commun 205:1748–1754

    Article  PubMed  CAS  Google Scholar 

  43. Ahn MY, Chung HY, Choi WS, Lee BM, Yoon S, Kim HS (2010) Anti-tumor effect of apicidin on Ishikawa human endometrial cancer cells both in vitro and in vivo by blocking histone deacetylase 3 and 4. Int J Oncol 36:125–131

    PubMed  CAS  Google Scholar 

  44. Sowinska A, Jagodzinski PP (2007) RNA interference-mediated knockdown of DNMT1 and DNMT3b induces CXCL12 expression in MCF-7 breast cancer and AsPC1 pancreatic carcinoma cell lines. Cancer Lett 355:153–159

    Article  Google Scholar 

  45. Frogne T, Jepsen JS, Larsen SS, Fog CK, Brockdorff BL, Lykkesfeldt AE (2005) Antiestrogen-resistant human breast cancer cells require activated protein kinase B/Akt for growth. Endocr Relat Cancer 12:599–614

    Article  PubMed  CAS  Google Scholar 

  46. Sabnis G, Goloubeva O, Jelovac D, Schayowitz A, Brodie A (2007) Inhibition of the phosphatidylinositol 3-kinase/Akt pathway improves response of long-term estrogen-deprived breast cancer xenografts to antiestrogens. Clin Cancer Res 13:2751–2757

    Article  PubMed  CAS  Google Scholar 

  47. Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22:4632–4642

    Article  PubMed  CAS  Google Scholar 

  48. Yang X, Yan Y, Davidson NE (2001) DNA methylation in breast cancer. Endocr Relat Cancer 8:115–127

    Article  PubMed  CAS  Google Scholar 

  49. Altundag O, Altundag K, Gunduz M (2004) DNA methylation inhibitor, procainamide, may decrease the tamoxifen resistance by inducing overexpression of the estrogen receptor beta in breast cancer patients. Med Hypotheses 63:684–687

    Article  PubMed  CAS  Google Scholar 

  50. Finkelstein J, Martin J (2000) Homocystein. Int J Biochem Cell Biol 32:385–389

    Article  PubMed  CAS  Google Scholar 

  51. Champe PC, Harvey RA (2008) Biochemistry. Lippincott’s illustrated reviews, 4th edn. Lippincott Williams and Wilkins, Hagerstown

    Google Scholar 

  52. Kim SK, Yang JW, Kim MR, Roh SH, Kim HG, Lee KY, Jeong HG, Kang KW (2008) Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Rad Biol Med 45:537–546

    Article  PubMed  CAS  Google Scholar 

  53. Fry MJ (2001) Phosphoinositide 3-kinase signaling in breast cancer: how big a role might it play? Breast Cancer Res 3:304–312

    Article  PubMed  CAS  Google Scholar 

  54. Ahmad S, Singh N, Glazer RI (1999) Role of Akt1 in 17β-estradiol- and insulin-like growth factor I (IGF-I)-dependent proliferation and prevention of apoptosis in MCF-7 breast carcinoma cells. Biochem Pharmacol 58:425–430

    Article  PubMed  CAS  Google Scholar 

  55. Jordan NJ, Gee JM, Barrow D, Wakeling AE, Nicholson RI (2004) Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 87:167–180

    Article  PubMed  CAS  Google Scholar 

  56. Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase akt/PKB. Exp Cell Res 253:210–229

    Article  PubMed  CAS  Google Scholar 

  57. El-Deiry WS, Nelkin BD, Celano P, Yen RW, Falco JP, Hamilton SR, Baylin SB (1991) High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc Natl Acad Sci USA 88:3470–3474

    Article  PubMed  CAS  Google Scholar 

  58. De Marzo AM, Marchi VL, Yang ES, Veeraswamy R, Lin X, Nelson WG (1999) Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res 59:3855–3860

    PubMed  Google Scholar 

  59. Issa JP, Vertino PM, Wu J, Sazawal S, Celano P, Nelkin BD, Hamilton SR, Baylin SB (1993) Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst 85:1235–1240

    Article  PubMed  CAS  Google Scholar 

  60. Ramchandani S, MacLeod AR, Pinard M, von Hofe E, Szyf M (1997) Inhibition of tumorigenesis by a cytosine-DNA, methyltransferase, antisense oligodeoxynucleotide. Proc Natl Acad Sci USA 94:684–689

    Article  PubMed  CAS  Google Scholar 

  61. Sahin M, Sahin E, Gumuslu S, Erdogan A, Gultekin M (2010) DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability. Cancer Metastasis Rev 29:655–676

    Article  PubMed  CAS  Google Scholar 

  62. Satini V, Kantarjian HM, Issa JP (2001) Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 134:573–586

    Google Scholar 

  63. Cui M, Wen Z, Chen J, Yang Z, Zhang H (2010) 5-Aza-2′-deoxycytidine is a potent inhibitor of DNA methyltransferase 3B and induces apoptosis in human endometrial cancer cell lines with the up-regulation of hMLH1. Med Oncol 27:278–285

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowldegment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Keon Wook Kang, No. 2009-0070587).

Conflicts of interest

All authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keon Wook Kang.

Additional information

N. T. T. Phuong and S. K. Kim equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phuong, N.T.T., Kim, S.K., Lim, S.C. et al. Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat 130, 73–83 (2011). https://doi.org/10.1007/s10549-010-1304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1304-2

Keywords

Navigation