Skip to main content

Advertisement

Log in

DNA repair signature is associated with anthracycline response in triple negative breast cancer patients

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We hypothesized that a subset of sporadic triple negative (TN) breast cancer patients whose tumors have defective DNA repair similar to BRCA1-associated tumors are more likely to exhibit up-regulation of DNA repair-related genes, anthracycline-sensitivity, and taxane-resistance. We derived a defective DNA repair gene expression signature of 334 genes by applying a previously published BRCA1-associated expression pattern to three datasets of sporadic TN breast cancers. We confirmed a subset of 69 of the most differentially expressed genes by quantitative RT-PCR, using a low density custom array (LDA). Next, we tested the association of this DNA repair microarray signature expression with pathologic response in neoadjuvant anthracycline trials of FEC (n = 50) and AC (n = 16), or taxane-based TET chemotherapy (n = 39). Finally, we collected paraffin-fixed, formalin-embedded biopsies from TN patients who had received neoadjuvant AC (n = 28), and tested the utility of the LDA to discriminate response. Correlation between RNA expression measured by the microarrays and 69-gene LDA was ascertained. This defective DNA repair microarray gene expression pattern was significantly associated with anthracycline response and taxane resistance, with the area under the ordinary receiver operating characteristic curve (AUC) of 0.61 (95% CI = 0.45–0.77), and 0.65 (95% CI = 0.46–0.85), respectively. From the FFPE samples, the 69-gene LDA could discriminate AC responders, with AUC of 0.79 (95% CI = 0.59–0.98). In conclusion, a promising defective DNA repair gene expression signature appears to differentiate TN breast cancers that are sensitive to anthracyclines and resistant to taxane-based chemotherapy, and should be tested in clinical trials with other DNA-damaging agents and PARP-1 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334

    Article  CAS  PubMed  Google Scholar 

  2. von Minckwitz G KM, Kümmel S, Fasching P, Eiermann W, Blohmer J-U, Costa SD, Sibylle L, Dietmar V, Untch M (2008) Integrated meta-analysis on 6402 patients with early breast cancer receiving neoadjuvant anthracycline-taxane ± trastuzumab containing chemotherapy. SABCS Abstract 792008

  3. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511(2):145–178

    Article  CAS  PubMed  Google Scholar 

  5. Tassone P, Di Martino MT, Ventura M, Pietragalla A, Cucinotto I, Calimeri T et al (2009) Loss of BRCA1 function increases the antitumor activity of cisplatin against human breast cancer xenografts in vivo. Cancer Biol Ther 8(7):648–653

    Article  CAS  PubMed  Google Scholar 

  6. Murray MM, Mullan PB, Harkin DP (2007) Role played by BRCA1 in transcriptional regulation in response to therapy. Biochem Soc Trans 35(5):1342–1346

    Article  CAS  PubMed  Google Scholar 

  7. Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP (2004) The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 96(22):1659–1668

    Article  CAS  PubMed  Google Scholar 

  8. Tassone P, Tagliaferri P, Perricelli A, Blotta S, Quaresima B, Martelli ML et al (2003) BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer 88(8):1285–1291

    Article  CAS  PubMed  Google Scholar 

  9. Delaloge S, Bidard F, El Masmoudi Y, Bressac de Paillerets B, Caron O, Bourgier C, Garbay J, Spielmann M, André F. BRCA1 germ-line mutation: Predictive of sensitivity to anthracyclin alkylating agents regimens but not to taxanes? J Clin Oncol. Abstract 5742008 May 20, 26

  10. Chappuis PO, Goffin J, Wong N, Perret C, Ghadirian P, Tonin PN et al (2002) A significant response to neoadjuvant chemotherapy in BRCA1/2 related breast cancer. J Med Genet 39(8):608–610

    Article  CAS  PubMed  Google Scholar 

  11. Hubert A, Mali B, Hamburger T, Rottenberg Y, Uziely B, Peretz T et al (2009) Response to neo-adjuvant chemotherapy in BRCA1 and BRCA2 related stage III breast cancer. Fam Cancer 8:173–177

    Article  CAS  PubMed  Google Scholar 

  12. Byrski T, Huzarski T, Dent R, Gronwald J, Zuziak D, Cybulski C et al (2009) Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 115:359–363

    Article  CAS  PubMed  Google Scholar 

  13. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M et al (2008) Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat 108(2):289–296

    Article  CAS  PubMed  Google Scholar 

  14. Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D et al (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26(14):2126–2132

    Article  CAS  PubMed  Google Scholar 

  15. James CR, Quinn JE, Mullan PB, Johnston PG, Harkin DP (2007) BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist 12(2):142–150

    Article  CAS  PubMed  Google Scholar 

  16. Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25(43):5846–5853

    Article  CAS  PubMed  Google Scholar 

  17. Brody LC (2005) Treating cancer by targeting a weakness. N Engl J Med 353(9):949–950

    Article  CAS  PubMed  Google Scholar 

  18. Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819

    Article  CAS  PubMed  Google Scholar 

  19. Mueller CR, Roskelley CD (2003) Regulation of BRCA1 expression and its relationship to sporadic breast cancer. Breast Cancer Res 5(1):45–52

    Article  CAS  PubMed  Google Scholar 

  20. van de Vijver MJ, He YD, van’ t Veer LJ, Dai H, Hart AA, Voskuil DW et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  PubMed  Google Scholar 

  21. Mohsin SK, Weiss HL, Gutierrez MC, Chamness GC, Schiff R, Digiovanna MP et al (2005) Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol 23(11):2460–2468

    Article  CAS  PubMed  Google Scholar 

  22. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15(1):68–74

    Article  CAS  PubMed  Google Scholar 

  23. Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M, Tubiana-Hulin M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00–01 clinical trial. Lancet Oncol 8(12):1071–1078

    Article  CAS  PubMed  Google Scholar 

  24. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R et al (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362(9381):362–369

    Article  CAS  PubMed  Google Scholar 

  25. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Tham YL et al (2005) Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J Clin Oncol 23(6):1169–1177

    Article  CAS  PubMed  Google Scholar 

  26. Martin RW, Orelli BJ, Yamazoe M, Minn AJ, Takeda S, Bishop DK (2007) RAD51 up-regulation bypasses BRCA1 function and is a common feature of BRCA1-deficient breast tumors. Cancer Res 67(20):9658–9665

    Article  CAS  PubMed  Google Scholar 

  27. Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC et al (2004) Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 164(1):35–42

    CAS  PubMed  Google Scholar 

  28. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Google Scholar 

  29. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281

    Article  PubMed  Google Scholar 

  30. Wysocki PJ, Korski K, Lamperska K, Zaluski J, Mackiewicz A (2008) Primary resistance to docetaxel-based chemotherapy in metastatic breast cancer patients correlates with a high frequency of BRCA1 mutations. Med Sci Monit 14(7):SC7–SC10

    CAS  PubMed  Google Scholar 

  31. Tassone P, Blotta S, Palmieri C, Masciari S, Quaresima B, Montagna M et al (2005) Differential sensitivity of BRCA1-mutated HCC1937 human breast cancer cells to microtubule-interfering agents. Int J Oncol 26(5):1257–1263

    CAS  PubMed  Google Scholar 

  32. Gilmore PM, McCabe N, Quinn JE, Kennedy RD, Gorski JJ, Andrews HN et al (2004) BRCA1 interacts with and is required for paclitaxel-induced activation of mitogen-activated protein kinase kinase kinase 3. Cancer Res 64(12):4148–4154

    Article  CAS  PubMed  Google Scholar 

  33. Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8(8):R157

    Article  PubMed  Google Scholar 

  34. Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H et al (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9(5):R65

    Article  PubMed  Google Scholar 

  35. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A et al (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14(24):8010–8018

    Article  CAS  PubMed  Google Scholar 

  36. Sgagias MK, Wagner KU, Hamik B, Stoeger S, Spieker R, Huber LJ et al (2004) Brca1-deficient murine mammary epithelial cells have increased sensitivity to CDDP and MMS. Cell Cycle 3(11):1451–1456

    CAS  PubMed  Google Scholar 

  37. Ashworth A (2008) A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 26(22):3785–3790

    Article  CAS  PubMed  Google Scholar 

  38. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  39. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134

    Article  CAS  PubMed  Google Scholar 

  40. O’Shaughnessy J, Osborne C, Pippen J, Yoffe M, Patt D, Monaghan G, Rocha C, Ossovskaya V, Sherman B, Bradley C (2009) Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomized phase II trial. J Clin Oncol. Abstract 32009; 27

  41. Abruzzo LV, Lee KY, Fuller A, Silverman A, Keating MJ, Medeiros LJ et al (2005) Validation of oligonucleotide microarray data using microfluidic low-density arrays: a new statistical method to normalize real-time RT-PCR data. Biotechniques 38(5):785–792

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Chang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, A.A., Makris, A., Wu, M.F. et al. DNA repair signature is associated with anthracycline response in triple negative breast cancer patients. Breast Cancer Res Treat 123, 189–196 (2010). https://doi.org/10.1007/s10549-010-0983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0983-z

Keywords

Navigation