Skip to main content

Advertisement

Log in

S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Epigenetic abnormalities including abnormal histone methyltransferase activity contribute to breast cancer pathogenesis. An example is over expression of the polycomb repressive complex (PRC) 2 member enhancer of zeste homolog 2 (EZH2) which is linked to epigenetic silencing and poor prognosis. Recent evidence shows that S-adenosylhomocysteine (AdoHcy) hydrolase inhibitors (AHI) such as 3-deazaneplanocin A (DZNep) modulate chromatin through indirect inhibition of histone methyltransferases including EZH2. We investigated the biological effects of AdoHcy hydrolase inhibition using DZNep and its structural analogues 3-deazaadenosine (DZA) and neplanocin A (Nep A) in breast cancer cells. EZH2 protein expression was decreased and dose dependent growth inhibition occurred with variable potencies in MCF7, MDA-MB-231 and SKBr3 breast cancer cells. Cellular proliferation was inhibited through G2/M cell cycle arrest and apoptosis. In addition breast cancer cells accumulated cytoplasmic lipid droplets in response to AdoHcy hydrolase inhibition consistent with a differentiating effect. Each analogue induced a similar pattern of biological activity against breast cancer cells but with differences in potency (DZA > DZNep > Nep A). Co-administration with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced synergistic inhibition of breast cancer cell proliferation. Furthermore, the relatively AHI resistant human epidermal growth factor receptor 2 (HER2) positive cell line SKBr3 underwent synergistic growth inhibition in response to co-treatment with the HER2 directed therapeutic antibody trastuzumab. In conclusion, AHI induce growth inhibition, cell cycle arrest, apoptosis and differentiation in breast cancer cells and synergise with HDAC and HER2 inhibition. Targeting histone methyltransferase activity might be of therapeutic value in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  PubMed  CAS  Google Scholar 

  2. Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res Fundam Mol Mech Mutagen 647:21–29

    Article  CAS  Google Scholar 

  3. Laible G, Wolf A, Dorn R, Reuter G, Nislow C, Lebersorger A, Popkin D, Pillus L, Jenuwein T (1997) Mammalian homologues of the polycomb-group gene enhancer of zeste mediate gene silencing in drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J 16:3219–3232

    Article  PubMed  CAS  Google Scholar 

  4. Satijn DPE, Otte AP (1999) Polycomb group protein complexes: do different complexes regulate distinct target genes? Biochimica et Biophysica Acta (BBA) Gene Struct Expr 1447:1–16

    Article  CAS  Google Scholar 

  5. Hwang C, Giri VN, Wilkinson JC, Wright CW, Wilkinson AS, Cooney KA, Duckett CS (2008) EZH2 regulates the transcription of estrogen-responsive genes through association with REA, an estrogen receptor corepressor. Breast Cancer Res Treat 107:235–242

    Article  PubMed  CAS  Google Scholar 

  6. Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H, Sun L, Zhang Y, Chen Y, Li R, Zhang Y, Hong M, Shang Y (2007) Integration of estrogen and Wnt Signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 27:5105–5119

    Article  PubMed  CAS  Google Scholar 

  7. Su IH, Dobenecker M-W, Dickinson E, Oser M, Basavaraj A, Marqueron R, Viale A, Reinberg D, Wülfing C, Tarakhovsky A (2005) Polycomb group protein Ezh2 controls actin polymerization and cell signaling. Cell 121:425–436

    Article  PubMed  CAS  Google Scholar 

  8. Tonini T, Bagella L, D’Andrilli G, Claudio PP, Giordano A (2004) Ezh2 reduces the ability of HDAC1-dependent pRb2//p130 transcriptional repression of cyclin A. Oncogene 23:4930–4937

    Article  PubMed  CAS  Google Scholar 

  9. van der Vlag J, Otte AP (1999) Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 23:474–478

    Article  PubMed  Google Scholar 

  10. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    Article  PubMed  CAS  Google Scholar 

  11. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP, Akslen LA (2006) EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24:268–273

    Article  PubMed  CAS  Google Scholar 

  12. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22:5323–5335

    Article  PubMed  CAS  Google Scholar 

  13. Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A, Aas T, Otte AP, Akslen LA (2006) Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res 12:1168–1174

    Article  PubMed  CAS  Google Scholar 

  14. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100:11606–11611

    Article  PubMed  CAS  Google Scholar 

  15. Pietersen AM, Horlings HM, Hauptmann M, Langerod A, Ajouaou A, Cornelissen-Steijger P, Wessels LF, Jonkers J, van de Vijver MJ, van Lohuizen M (2008) EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res 10:R109

    Article  PubMed  Google Scholar 

  16. Cha T-L, Zhou BP, Xia W, Wu Y, Yang C-C, Chen C-T, Ping B, Otte AP, Hung M-C (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310:306–310

    Article  PubMed  CAS  Google Scholar 

  17. O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21:4330–4336

    Article  PubMed  Google Scholar 

  18. Gonzalez ME, Li X, Toy K, DuPrie M, Ventura AC, Banerjee M, Ljungman M, Merajver SD, Kleer CG (2009) Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene 28:843–853

    Article  PubMed  Google Scholar 

  19. Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16(Spec No 1):R28–R49

    Google Scholar 

  20. De Clercq E (2005) John Montgomery’s legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity. Nucleosides Nucleotides Nucl Acids 24:1395–1415

    Article  Google Scholar 

  21. Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, Ustun C, Rao R, Fernandez P, Chen J, Balusu R, Koul S, Atadja P, Marquez VE, Bhalla KN (2009) Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114:2733–2743

    PubMed  CAS  Google Scholar 

  22. Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23:4061–4071

    Article  PubMed  CAS  Google Scholar 

  23. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET, Yu Q (2007) Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21:1050–1063

    Article  PubMed  CAS  Google Scholar 

  24. Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE, Jones PA (2009) DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8:1579–1588

    Article  PubMed  CAS  Google Scholar 

  25. Jiang X, Tan J, Li J, Kivimae S, Yang X, Zhuang L, Lee PL, Chan MT, Stanton LW, Liu ET, Cheyette BN, Yu Q (2008) DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 13:529–541

    Article  PubMed  CAS  Google Scholar 

  26. Crabb SJ, Howell M, Rogers H, Ishfaq M, Yurek-George A, Carey K, Pickering BM, East P, Mitter R, Maeda S, Johnson PW, Townsend P, Shin-ya K, Yoshida M, Ganesan A, Packham G (2008) Characterisation of the in vitro activity of the depsipeptide histone deacetylase inhibitor spiruchostatin A. Biochem Pharmacol 76:463–475

    Article  PubMed  CAS  Google Scholar 

  27. Packham G, Brimmell M, Cleveland JL (1997) Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation. Biochem J 328(Pt 3):807–813

    PubMed  CAS  Google Scholar 

  28. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

    Article  PubMed  CAS  Google Scholar 

  29. Crabb SJ, Hague A, Johnson PW, Packham G (2008) BAG-1 inhibits PPARgamma-induced cell death, but not PPARgamma-induced transcription, cell cycle arrest or differentiation in breast cancer cells. Oncol Rep 19:689–696

    PubMed  CAS  Google Scholar 

  30. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  PubMed  CAS  Google Scholar 

  31. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497

    PubMed  CAS  Google Scholar 

  32. Nolan L, Johnson PW, Ganesan A, Packham G, Crabb SJ (2008) Will histone deacetylase inhibitors require combination with other agents to fulfil their therapeutic potential? Br J Cancer 99:689–694

    Article  PubMed  CAS  Google Scholar 

  33. Huang L, Pardee AB (2000) Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med 6:849–866

    PubMed  CAS  Google Scholar 

  34. Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, Frankel P, Smith DD, Doroshow JH, Gandara DR, Aparicio A, Somlo G, Wong C (2008) A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California cancer consortium study. Clin Cancer Res 14:7138–7142

    Article  PubMed  CAS  Google Scholar 

  35. Munster P, Marchion D, Bicaku E, Lacevic M, Kim J, Centeno B, Daud A, Neuger A, Minton S, Sullivan D (2009) Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res 15:2488–2496

    Article  PubMed  CAS  Google Scholar 

  36. Bali P, Pranpat M, Swaby R, Fiskus W, Yamaguchi H, Balasis M, Rocha K, Wang HG, Richon V, Bhalla K (2005) Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of her-2. Clin Cancer Res 11:6382–6389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK and Wessex Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Crabb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, A., Johnson, P.W.M., Packham, G. et al. S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Res Treat 127, 109–119 (2011). https://doi.org/10.1007/s10549-010-0982-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0982-0

Keywords

Navigation