Skip to main content

Advertisement

Log in

Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

This study quantifies uptake of a fluorescent glucose analog, (2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose) (2-NBDG), in a large panel of breast cancer cells and demonstrates potential to monitor changes in glycolysis caused by anticancer and endocrine therapies. Expressions of glucose transporter (GLUT 1) and hexokinase (HK I), which phosphorylates 2-NBDG, were measured via western blot in two normal mammary epithelial and eight breast cancer cell lines of varying biological subtype. Fluorescence intensity of each cell line labeled with 100 μM 2-NBDG for 20 min or unlabeled control was quantified. A subset of cancer cells was treated with anticancer and endocrine therapies, and 2-NBDG fluorescence changes were measured. Expression of GLUT 1 was necessary for uptake of 2-NBDG, as demonstrated by lack of 2-NBDG uptake in normal human mammary epithelial cells (HMECs). GLUT 1 expression and 2-NBDG uptake was ubiquitous among all breast cancer lines. Reduction and stimulation of 2-NBDG uptake was demonstrated by perturbation with anticancer agents, lonidamine (LND), and α-cyano-hydroxycinnamate (α-Cinn), respectively. LND directly inhibits HK and significantly reduced 2-NBDG fluorescence in a subset of two breast cancer cell lines. Conversely, when cells were treated with α-Cinn, a drug used to increase glycolysis, 2-NBDG uptake was increased. Furthermore, tamoxifen (tam), a common endocrine therapy, was administered to estrogen receptor positive and negative (ER+/−) breast cells and demonstrated a decreased 2-NBDG uptake in ER+ cells, reflecting a decrease in glycolysis. Results indicate that 2-NBDG uptake can be used to measure changes in glycolysis and has potential for use in early drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biersack HJ, Bender H, Palmedo H (2004) FDG-PET in monitoring therapy of breast cancer. Eur J Nucl Med Mol Imaging 31(Suppl 1):S112–S117

    Article  PubMed  Google Scholar 

  2. Nitin N, Carlson AL, Muldoon T, El-Naggar AK, Gillenwater A et al (2009) Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy-glucose. Int J Cancer 124:2634–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Neil RG, Wu L, Mullani N (2005) Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol Imaging Biol 7:388–392

    Article  PubMed  Google Scholar 

  4. Livshits L, Caduff A, Talary MS, Lutz HU, Hayashi Y et al (2009) The role of GLUT1 in the sugar-induced dielectric response of human erythrocytes. J Phys Chem B 113:2212–2220

    Article  CAS  PubMed  Google Scholar 

  5. Meira DD, Marinho-Carvalho MM, Teixeira CA, Veiga VF, Da Poian AT et al (2005) Clotrimazole decreases human breast cancer cells viability through alterations in cytoskeleton-associated glycolytic enzymes. Mol Genet Metab 84:354–362

    Article  CAS  PubMed  Google Scholar 

  6. He Q, Xu RZ, Shkarin P, Pizzorno G, Lee-French CH et al (2003) Magnetic resonance spectroscopic imaging of tumor metabolic markers for cancer diagnosis, metabolic phenotyping, and characterization of tumor microenvironment. Dis Markers 19:69–94

    Article  CAS  PubMed  Google Scholar 

  7. Furman E, Rushkin E, Margalit R, Bendel P, Degani H (1992) Tamoxifen induced changes in MCF7 human breast cancer: in vitro and in vivo studies using nuclear magnetic resonance spectroscopy and imaging. J Steroid Biochem Mol Biol 43:189–195

    Article  CAS  PubMed  Google Scholar 

  8. Mestres P, Morguet A, Schmidt W, Kob A, Thedinga E (2006) A new method to assess drug sensitivity on breast tumor acute slices preparation. Ann N Y Acad Sci 1091:460–469

    Article  CAS  PubMed  Google Scholar 

  9. Ramanujan VK, Herman BA (2008) Nonlinear scaling analysis of glucose metabolism in normal and cancer cells. J Biomed Opt 13:031219

    Article  PubMed  Google Scholar 

  10. Yoshioka K, Saito M, Oh KB, Nemoto Y, Matsuoka H et al (1996) Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Biosci Biotechnol Biochem 60:1899–1901

    Article  CAS  PubMed  Google Scholar 

  11. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ et al (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387

    Article  CAS  PubMed  Google Scholar 

  12. Sheth RA, Josephson L, Mahmood U (2009) Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography. J Biomed Opt 14:064014

    Article  PubMed  PubMed Central  Google Scholar 

  13. Levi J, Cheng Z, Gheysens O, Patel M, Chan CT et al (2007) Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug Chem 18:628–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dietze EC, Troch MM, Bean GR, Heffner JB, Bowie ML et al (2004) Tamoxifen and tamoxifen ethyl bromide induce apoptosis in acutely damaged mammary epithelial cells through modulation of AKT activity. Oncogene 23:3851–3862

    Article  CAS  PubMed  Google Scholar 

  15. Millon SR, Ostrander JH, Yazdanfar S, Brown JQ, Bender JE et al (2010) Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes. J Biomed Opt 15:018002

    Article  PubMed  PubMed Central  Google Scholar 

  16. Erlichman JS, Hewitt A, Damon TL, Hart M, Kurascz J et al (2008) Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis. J Neurosci 28:4888–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Floridi A, Paggi MG, D’Atri S, De Martino C, Marcante ML et al (1981) Effect of lonidamine on the energy metabolism of Ehrlich ascites tumor cells. Cancer Res 41:4661–4666

    CAS  PubMed  Google Scholar 

  18. Pincheira R, Chen Q, Zhang JT (2001) Identification of a 170-kDa protein over-expressed in lung cancers. Br J Cancer 84:1520–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rivenzon-Segal D, Boldin-Adamsky S, Seger D, Seger R, Degani H (2003) Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer. Int J Cancer 107:177–182

    Article  CAS  PubMed  Google Scholar 

  20. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  PubMed  Google Scholar 

  21. Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL (2002) Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 29:443–453

    Article  CAS  PubMed  Google Scholar 

  22. Di Cosimo S, Ferretti G, Papaldo P, Carlini P, Fabi A et al (2003) Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc) 39:157–174

    Article  CAS  Google Scholar 

  23. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rivenzon-Segal D, Margalit R, Degani H (2002) Glycolysis as a metabolic marker in orthotopic breast cancer, monitored by in vivo (13)C MRS. Am J Physiol Endocrinol Metab 283:E623–E630

    Article  CAS  PubMed  Google Scholar 

  25. Perumal SS, Shanthi P, Sachdanandam P (2005) Therapeutic effect of tamoxifen and energy-modulating vitamins on carbohydrate-metabolizing enzymes in breast cancer. Cancer Chemother Pharmacol 56:105–114

    Article  CAS  PubMed  Google Scholar 

  26. Monazzam A, Josephsson R, Blomqvist C, Carlsson J, Langstrom B et al (2007) Application of the multicellular tumour spheroid model to screen PET tracers for analysis of early response of chemotherapy in breast cancer. Breast Cancer Res 9:R45

    Article  PubMed  PubMed Central  Google Scholar 

  27. Monazzam A, Razifar P, Simonsson M, Qvarnstrom F, Josephsson R et al (2006) Multicellular tumour spheroid as a model for evaluation of [18F]FDG as biomarker for breast cancer treatment monitoring. Cancer Cell Int 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chambers AF (2009) MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69:5292–5293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the NIH Imaging Training Grant and DOD grant W81XWH-05-1-0363. Also, the Seewaldt lab has been especially helpful and is greatly appreciated for training SM in the use of molecular assays and for providing access to appropriate laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacy R. Millon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millon, S.R., Ostrander, J.H., Brown, J.Q. et al. Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines. Breast Cancer Res Treat 126, 55–62 (2011). https://doi.org/10.1007/s10549-010-0884-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0884-1

Keywords

Navigation