Skip to main content

Advertisement

Log in

Pharmacometabolomics of docetaxel-treated human MCF7 breast cancer cells provides evidence of varying cellular responses at high and low doses

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

There is growing evidence that docetaxel, a microtubule-targeting agent like the other taxane paclitaxel, induces dual cytotoxicity mechanism according to dose level. Postgenomics screening technologies are now more and more applied to the elucidation of drug response mechanisms. Proton nuclear magnetic resonance spectroscopy-based pharmacometabolomics was here applied to get further insight into the response of human MCF7 breast carcinoma cells to docetaxel at high (clinical, 5 μM) and low (1 nM) doses. The global response to both doses was evaluated by nuclear morphology and DNA content, the latter as an index of cell proliferation and DNA ploidy. High dose provoked long-lasting cell cycle arrest in mitosis during the first 48 h of exposure to treatment and severe decrease in DNA content followed by significant amount of cell death. In contrast, at low dose, no long-lasting cell cycle arrest was observed on micrographies, and DNA content was decreased but less than at high dose (P < 0.05), without significant cell death. This response was compared to biochemical alteration assessed by pharmacometabolomics. Thirty metabolites were identified and quantified. Metabolite profiling at clinical dose revealed time-dependent disorders in derivatives of glycolysis, lipid metabolism and glutathione metabolism. Comparison between high and low doses was performed at 72 h and showed common traits including the accumulation of cytidinediphosphocholine (×5.0 and ×6.9, respectively, P < 0.03), the decrease in phosphatidylcholine (×0.3 and ×0.2, respectively, P < 0.03), and gluthathione (×0.6 and ×0.6, respectively, P < 0.03). Despite that, significant dose-dependent differences were found in 12 of 30 measured metabolites. Among them, the most discriminant metabolites were polyunsaturated fatty acids (ratio of high-to-low dose of 14.8, P < 0.05), glutamate, myoinositol, and homocysteine (ratio < 0.4, P < 0.05). In addition, the mechanism for glutathione decrease was different. At high dose, it resulted from extensive consumption with precursor starvation (glutamate: −89%, P < 0.05) and increased glutathione S-transferase activity (×5, P < 0.01), whereas at low dose, it resulted from glutathione biosynthesis blockade with homocysteine accumulation (+144%, P < 0.03) and decreased glutathione S-transferase activity (−70%, P < 0.01). Altogether, this pharmacometabolomics analysis provides further evidence of the varying cellular responses at high and low doses of docetaxel in MCF7 breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DTX:

Docetaxel

HRMAS:

High resolution magic angle spinning

1H-NMR:

Proton nuclear magnetic resonance

CBS:

Cystathionine beta-synthase

CPT:

Choline phosphotransferase

DAG:

Diacylglycerol

PA:

Phosphatidic acid

PKC:

Protein kinase C

References

  1. Parkin DM (2004) International variation. Oncogene 23:6329–6340. doi:10.1038/sj.onc.1207726

    Article  CAS  PubMed  Google Scholar 

  2. Lacey JV Jr, Devesa SS, Brinton LA (2002) Recent trends in breast cancer incidence and mortality. Environ Mol Mutagen 39:82–88. doi:10.1002/em.10062

    Article  CAS  PubMed  Google Scholar 

  3. Chan S, Friedrichs K, Noel D, Pinter T, Van Belle S, Vorobiof D, Duarte R, Gil Gil M, Bodrogi I, Murray E, Yelle L, Von Minckwitz G, Korec S, Simmonds P, Buzzi F, Gonzalez Mancha R, Richardson G, Walpole E, Ronzoni M, Murawsky M, Alakl M, Riva A, Crown J (1999) Prospective randomized trial of docetaxel versus doxorubicin in patients with metastatic breast cancer. J Clin Oncol 17:2341–2354

    CAS  PubMed  Google Scholar 

  4. Nabholtz JM, Senn HJ, Bezwoda WR, Melnychuk D, Deschenes L, Douma J, Vandenberg TA, Rapoport B, Rosso R, Trillet-Lenoir V, Drbal J, Molino A, Nortier JW, Richel DJ, Nagykalnai T, Siedlecki P, Wilking N, Genot JY, Hupperets PS, Pannuti F, Skarlos D, Tomiak EM, Murawsky M, Alakl M, Aapro M et al (1999) Prospective randomized trial of docetaxel versus mitomycin plus vinblastine in patients with metastatic breast cancer progressing despite previous anthracycline-containing chemotherapy. 304 Study Group. J Clin Oncol 17:1413–1424

    CAS  PubMed  Google Scholar 

  5. Ford HE, Yap YS, Miles DW, Makris A, Hall M, Miller L, Harries M, Smith IE, Johnston SR (2006) A phase II study of weekly docetaxel in patients with anthracycline pretreated metastatic breast cancer. Cancer Chemother Pharmacol 58:809–815. doi:10.1007/s00280-006-0222-9

    Article  CAS  PubMed  Google Scholar 

  6. Ringel I, Horwitz SB (1991) Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J Natl Cancer Inst 83:288–291. doi:10.1093/jnci/83.4.288

    Article  CAS  PubMed  Google Scholar 

  7. Sweeney CJ, Miller KD, Sissons SE, Nozaki S, Heilman DK, Shen J, Sledge GW Jr (2001) The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res 61:3369–3372

    CAS  PubMed  Google Scholar 

  8. Mhaidat NM, Thorne RF, Zhang XD, Hersey P (2007) Regulation of docetaxel-induced apoptosis of human melanoma cells by different isoforms of protein kinase C. Mol Cancer Res 5:1073–1081. doi:10.1158/1541-7786.MCR-07-0059

    Article  CAS  PubMed  Google Scholar 

  9. Wang LG, Liu XM, Kreis W, Budman DR (1999) The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 44:355–361. doi:10.1007/s002800050989

    Article  CAS  PubMed  Google Scholar 

  10. Hernandez-Vargas H, Palacios J, Moreno-Bueno G (2007) Molecular profiling of docetaxel cytotoxicity in breast cancer cells: uncoupling of aberrant mitosis and apoptosis. Oncogene 26:2902–2913. doi:10.1038/sj.onc.1210102

    Article  CAS  PubMed  Google Scholar 

  11. Noguchi S (2006) Predictive factors for response to docetaxel in human breast cancers. Cancer Sci 97:813–820. doi:10.1111/j.1349-7006.2006.00265.x

    Article  CAS  PubMed  Google Scholar 

  12. Mizumachi T, Suzuki S, Naito A, Carcel-Trullols J, Evans TT, Spring PM, Oridate N, Furuta Y, Fukuda S, Higuchi M (2008) Increased mitochondrial DNA induces acquired docetaxel resistance in head and neck cancer cells. Oncogene 27:831–838. doi:10.1038/sj.onc.1210681

    Article  CAS  PubMed  Google Scholar 

  13. Ramanathan B, Jan KY, Chen CH, Hour TC, Yu HJ, Pu YS (2005) Resistance to paclitaxel is proportional to cellular total antioxidant capacity. Cancer Res 65:8455–8460. doi:10.1158/0008-5472.CAN-05-1162

    Article  CAS  PubMed  Google Scholar 

  14. Alexandre J, Hu Y, Lu W, Pelicano H, Huang P (2007) Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res 67:3512–3517. doi:10.1158/0008-5472.CAN-06-3914

    Article  CAS  PubMed  Google Scholar 

  15. Oktem G, Karabulut B, Selvi N, Sezgin C, Sanli UA, Uslu R, Yurtseven ME, Omay SB (2004) Differential effects of doxorubicin and docetaxel on nitric oxide production and inducible nitric oxide synthase expression in MCF-7 human breast cancer cells. Oncol Res 14:381–386

    CAS  PubMed  Google Scholar 

  16. Oktem G, Bilir A, Selvi N, Yurtseven ME, Vatansever S, Ates U, Uysal A, Omay SB (2006) Chemotherapy influences inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) activity on 3D breast cancer cell line. Oncol Res 16:195–203

    CAS  PubMed  Google Scholar 

  17. Saito F, Matsusaka S, Takahashi Y, Wakabayashi I (2008) Enhancement of nitric oxide synthase induction in alveolar macrophages by in vivo administration of docetaxel. Eur J Pharmacol 580:425–430. doi:10.1016/j.ejphar.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  18. Maestre N, Bezombes C, Plo I, Levade T, Lavelle F, Laurent G, Jaffrezou JP (2003) Phosphatidylcholine-derived phosphatidic acid and diacylglycerol are involved in the signaling pathways activated by docetaxel. J Exp Ther Oncol 3:36–46. doi:10.1046/j.1359-4117.2003.01065.x

    Article  CAS  PubMed  Google Scholar 

  19. Torres K, Horwitz SB (1998) Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res 58:3620–3626

    CAS  PubMed  Google Scholar 

  20. Hernandez-Vargas H, Palacios J, Moreno-Bueno G (2007) Telling cells how to die: docetaxel therapy in cancer cell lines. Cell Cycle 6:780–783

    CAS  PubMed  Google Scholar 

  21. Morse DL, Gray H, Payne CM, Gillies RJ (2005) Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Mol Cancer Ther 4:1495–1504. doi:10.1158/1535-7163.MCT-05-0130

    Article  CAS  PubMed  Google Scholar 

  22. Morvan D, Demidem A (2007) Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways. Cancer Res 67:2150–2159. doi:10.1158/0008-5472.CAN-06-2346

    Article  CAS  PubMed  Google Scholar 

  23. Rago R, Mitchen J, Wilding G (1990) DNA fluorometric assay in 96-well tissue culture plates using Hoechst 33258 after cell lysis by freezing in distilled water. Anal Biochem 191:31–34. doi:10.1016/0003-2697(90)90382-J

    Article  CAS  PubMed  Google Scholar 

  24. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  25. Morvan D, Demidem A, Guenin S, Madelmont JC (2006) Methionine-dependence phenotype of tumors: metabolite profiling in a melanoma model using l-[methyl-13C] methionine and high-resolution magic angle spinning 1H–13C nuclear magnetic resonance spectroscopy. Magn Reson Med 55:984–996. doi:10.1002/mrm.20869

    Article  CAS  PubMed  Google Scholar 

  26. Blajeski AL, Kottke TJ, Kaufmann SH (2001) A multistep model for paclitaxel-induced apoptosis in human breast cancer cell lines. Exp Cell Res 270:277–288. doi:10.1006/excr.2001.5349

    Article  CAS  PubMed  Google Scholar 

  27. Sterin M, Cohen JS, Mardor Y, Berman E, Ringel I (2001) Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: a 31P-magnetic resonance spectroscopy study. Cancer Res 61:7536–7543

    CAS  PubMed  Google Scholar 

  28. Brisdelli F, Iorio E, Knijn A, Ferretti A, Marcheggiani D, Lenti L, Strom R, Podo F, Bozzi A (2003) Two-step formation of 1H NMR visible mobile lipids during apoptosis of paclitaxel-treated K562 cells. Biochem Pharmacol 65:1271–1280. doi:10.1016/S0006-2952(03)00080-7

    Article  CAS  PubMed  Google Scholar 

  29. Subbaramaiah K, Marmo TP, Dixon DA, Dannenberg AJ (2003) Regulation of cyclooxgenase-2 mRNA stability by taxanes: evidence for involvement of p38, MAPKAPK-2, and HuR. J Biol Chem 278:37637–37647. doi:10.1074/jbc.M301481200

    Article  CAS  PubMed  Google Scholar 

  30. Reggiori F, Klionsky DJ (2005) Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol 17:415–422. doi:10.1016/j.ceb.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  31. Morse DL, Raghunand N, Sadarangani P, Murthi S, Job C, Day S, Howison C, Gillies RJ (2007) Response of choline metabolites to docetaxel therapy is quantified in vivo by localized (31)P MRS of human breast cancer xenografts and in vitro by high-resolution (31)P NMR spectroscopy of cell extracts. Magn Reson Med 58:270–280. doi:10.1002/mrm.21333

    Article  CAS  PubMed  Google Scholar 

  32. Knijn A, Brisdelli F, Ferretti A, Iorio E, Marcheggiani D, Bozzi A (2005) Metabolic alterations in K562 cells exposed to taxol and tyrphostin AG957: 1H NMR and biochemical studies. Cell Biol Int 29:890–897. doi:10.1016/j.cellbi.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  33. Morvan D, Demidem A, Papon J, De Latour M, Madelmont JC (2002) Melanoma tumors acquire a new phospholipid metabolism phenotype under cystemustine as revealed by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy of intact tumor samples. Cancer Res 62:1890–1897

    CAS  PubMed  Google Scholar 

  34. Morvan D, Demidem A, Papon J, Madelmont JC (2003) Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations. Magn Reson Med 49:241–248. doi:10.1002/mrm.10368

    Article  CAS  PubMed  Google Scholar 

  35. Williams SN, Anthony ML, Brindle KM (1998) Induction of apoptosis in two mammalian cell lines results in increased levels of fructose-1, 6-bisphosphate and CDP-choline as determined by 31P MRS. Magn Reson Med 40:411–420. doi:10.1002/mrm.1910400311

    Article  CAS  PubMed  Google Scholar 

  36. Taylor MM, Macdonald K, Morris AJ, McMaster CR (2005) Enhanced apoptosis through farnesol inhibition of phospholipase D signal transduction. FEBS J 272:5056–5063. doi:10.1111/j.1742-4658.2005.04914.x

    Article  CAS  PubMed  Google Scholar 

  37. Voziyan PA, Haug JS, Melnykovych G (1995) Mechanism of farnesol cytotoxicity: further evidence for the role of PKC-dependent signal transduction in farnesol-induced apoptotic cell death. Biochem Biophys Res Commun 212:479–486. doi:10.1006/bbrc.1995.1995

    Article  CAS  PubMed  Google Scholar 

  38. Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7:281–294. doi:10.1038/nrc2110

    Article  CAS  PubMed  Google Scholar 

  39. Fujii T, Garcia-Bermejo ML, Bernabo JL, Caamano J, Ohba M, Kuroki T, Li L, Yuspa SH, Kazanietz MG (2000) Involvement of protein kinase C delta (PKCdelta) in phorbol ester-induced apoptosis in LNCaP prostate cancer cells. Lack of proteolytic cleavage of PKCdelta. J Biol Chem 275:7574–7582. doi:10.1074/jbc.275.11.7574

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka Y, Gavrielides MV, Mitsuuchi Y, Fujii T, Kazanietz MG (2003) Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J Biol Chem 278:33753–33762. doi:10.1074/jbc.M303313200

    Article  CAS  PubMed  Google Scholar 

  41. Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90:313–323. doi:10.1016/j.biochi.2007.08.014

    Article  CAS  PubMed  Google Scholar 

  42. Merida I, Avila-Flores A, Merino E (2008) Diacylglycerol kinases: at the hub of cell signalling. Biochem J 409:1–18. doi:10.1042/BJ20071040

    Article  CAS  PubMed  Google Scholar 

  43. Wright MM, Henneberry AL, Lagace TA, Ridgway ND, McMaster CR (2001) Uncoupling farnesol-induced apoptosis from its inhibition of phosphatidylcholine synthesis. J Biol Chem 276:25254–25261. doi:10.1074/jbc.M011552200

    Article  CAS  PubMed  Google Scholar 

  44. Ruiz-Arguello MB, Basanez G, Goni FM, Alonso A (1996) Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem 271:26616–26621. doi:10.1074/jbc.271.43.26616

    Article  CAS  PubMed  Google Scholar 

  45. Mosharov E, Cranford MR, Banerjee R (2000) The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39:13005–13011. doi:10.1021/bi001088w

    Article  CAS  PubMed  Google Scholar 

  46. Prathapasinghe GA, Siow YL, Xu Z, O K (2008) Inhibition of cystathionine-beta-synthase activity during renal ischemia-reperfusion: role of pH and nitric oxide. Am J Physiol Renal Physiol 295:F912–F922. doi:10.1152/ajprenal.00040.2008

    Article  CAS  PubMed  Google Scholar 

  47. Iwata-Ichikawa E, Kondo Y, Miyazaki I, Asanuma M, Ogawa N (1999) Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem 72:2334–2344. doi:10.1046/j.1471-4159.1999.0722334.x

    Article  CAS  PubMed  Google Scholar 

  48. Perrotta C, De Palma C, Falcone S, Sciorati C, Clementi E (2005) Nitric oxide, ceramide and sphingomyelinase-coupled receptors: a tale of enzymes and messengers coordinating cell death, survival and differentiation. Life Sci 77:1732–1739. doi:10.1016/j.lfs.2005.05.016

    Article  CAS  PubMed  Google Scholar 

  49. Beddowes EJ, Faux SP, Chipman JK (2003) Chloroform, carbon tetrachloride and glutathione depletion induce secondary genotoxicity in liver cells via oxidative stress. Toxicology 187:101–115. doi:10.1016/S0300-483X(03)00058-1

    Article  CAS  PubMed  Google Scholar 

  50. Demidem A, Morvan D, Madelmont JC (2006) Bystander effects are induced by CENU treatment and associated with altered protein secretory activity of treated tumor cells: a relay for chemotherapy? Int J Cancer 119:992–1004. doi:10.1002/ijc.21761

    Article  CAS  PubMed  Google Scholar 

  51. Ward NE, Pierce DS, Chung SE, Gravitt KR, O’Brian CA (1998) Irreversible inactivation of protein kinase C by glutathione. J Biol Chem 273:12558–12566. doi:10.1074/jbc.273.20.12558

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Anne Cayre for microscopy analysis. This work was supported by La Ligue Régionale Contre le Cancer (Comités du Cantal et du Puy de Dôme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Morvan.

Additional information

The authors Mathilde Bayet-Robert and Daniel Morvan equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayet-Robert, M., Morvan, D., Chollet, P. et al. Pharmacometabolomics of docetaxel-treated human MCF7 breast cancer cells provides evidence of varying cellular responses at high and low doses. Breast Cancer Res Treat 120, 613–626 (2010). https://doi.org/10.1007/s10549-009-0430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0430-1

Keywords

Navigation