Skip to main content

Advertisement

Log in

Expression profile of microRNAs in c-Myc induced mouse mammary tumors

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

c-Myc is a transcription factor overexpression of which induces mammary cancer in transgenic mice. To explore whether certain microRNAs (mirRNA) mediate c-Myc induced mammary carcinogenesis, we studied mirRNA expression profile in mammary tumors developed from MMTV-c-myc transgenic mice, and found 50 and 59 mirRNAs showing increased and decreased expression, respectively, compared with lactating mammary glands of wild type mice. Twenty-four of these mirRNAs could be grouped into eight clusters because they had the same chromosomal localizations and might be processed from the same primary RNA transcripts. The increased expression of mir-20a, mir-20b, and mir-9 as well as decreased expression of mir-222 were verified by RT-PCR, real-time RT-PCR, and cDNA sequencing. Moreover, we fortuitously identified a novel non-coding RNA, the level of which was decreased in proliferating mammary glands of MMTV-c-myc mice was further decreased to undetectable level in the mammary tumors. Sequencing of this novel RNA revealed that it was transcribed from a region of mouse chromosome 19 that harbored the metastasis associated lung adenocarcinoma transcript-1 (Malat-1), a non-protein-coding gene. These results suggest that certain mirRNAs and the chromosome 19 derived non-coding RNAs may mediate c-myc induced mammary carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Perez DS, Hoage TR, Pritchett JR, Ducharme-Smith AL, Halling ML, Ganapathiraju SC et al (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet 17:642–655. doi:10.1093/hmg/ddm336

    Article  CAS  PubMed  Google Scholar 

  2. Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135:1201–1214. doi:10.1242/dev.005629

    Article  CAS  PubMed  Google Scholar 

  3. Arenz C (2006) MicroRNAs—future drug targets? Angew Chem Int Ed Engl 45:5048–5050. doi:10.1002/anie.200601537

    Article  CAS  PubMed  Google Scholar 

  4. Griffiths-Jones S, Grocock RJ, van DS, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144. doi:10.1093/nar/gkj112

    Article  CAS  PubMed  Google Scholar 

  5. Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122:9–12. doi:10.1016/j.cell.2005.06.030

    Article  CAS  PubMed  Google Scholar 

  6. Zamore PD, Haley B (2005) Ribo-genome: the big world of small RNAs. Science 309:1519–1524. doi:10.1126/science.1111444

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Rivas FV, Wohlschlegel J, Yates JRIII, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266

    PubMed  Google Scholar 

  8. Lu J, Qian J, Chen F, Tang X, Li C, Cardoso WV (2005) Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem Biophys Res Commun 334:319–323. doi:10.1016/j.bbrc.2005.05.206

    Article  PubMed  Google Scholar 

  9. Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  10. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. doi:10.1073/pnas.0510565103

    Article  CAS  PubMed  Google Scholar 

  11. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al (2005) A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632. doi:10.1158/0008-5472.CAN-05-2352

    Article  CAS  PubMed  Google Scholar 

  12. Verghese E, Hanby A, Speirs V, Hughes T (2008) Small is beautiful: microRNAs and breast cancer—where are we now? J Pathol 215:214–221. doi:10.1002/path.2359

    Article  CAS  PubMed  Google Scholar 

  13. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070. doi:10.1158/0008-5472.CAN-05-1783

    Article  CAS  PubMed  Google Scholar 

  14. Liao DJ, Thakur A, Wu J, Biliran H, Sarkar FH (2007) Perspectives on c-Myc, cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog 13:93–158

    PubMed  Google Scholar 

  15. Liao DJ, Dickson RB (2000) c-Myc in breast cancer. Endocr Relat Cancer 7:143–164. doi:10.1677/erc.0.0070143

    Article  CAS  PubMed  Google Scholar 

  16. Liao JD, Adsay NV, Khannani F, Grignon D, Thakur A, Sarkar FH (2007) Histological complexities of pancreatic lesions from transgenic mouse models are consistent with biological and morphological heterogeneity of human pancreatic cancer. Histol Histopathol 22:661–676

    CAS  PubMed  Google Scholar 

  17. Knoepfler PS (2007) Myc goes global: new tricks for an old oncogene. Cancer Res 67:5061–5063. doi:10.1158/0008-5472.CAN-07-0426

    Article  CAS  PubMed  Google Scholar 

  18. Chung HJ, Levens D (2005) c-Myc expression: keep the noise down!. Mol Cells 20:157–166

    CAS  PubMed  Google Scholar 

  19. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843. doi:10.1038/nature03677

    Article  PubMed  Google Scholar 

  20. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G et al (2006) MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141. doi:10.1073/pnas.0508889103

    Article  CAS  PubMed  Google Scholar 

  21. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi:10.1073/pnas.0307323101

    Article  CAS  PubMed  Google Scholar 

  22. Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394. doi:10.1158/0008-5472.CAN-06-0800

    Article  CAS  PubMed  Google Scholar 

  23. Sevignani C, Calin GA, Nnadi SC, Shimizu M, Davuluri RV, Hyslop T et al (2007) MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proc Natl Acad Sci USA 104:8017–8022. doi:10.1073/pnas.0702177104

    Article  CAS  PubMed  Google Scholar 

  24. Liao DJ, Du QQ, Yu BW, Grignon D, Sarkar FH (2003) Novel perspective: focusing on the X chromosome in reproductive cancers. Cancer Invest 21:641–658. doi:10.1081/CNV-120022385

    Article  CAS  PubMed  Google Scholar 

  25. Natrajan R, Williams RD, Hing SN, Mackay A, Reis-Filho JS, Fenwick K et al (2006) Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol 210:49–58. doi:10.1002/path.2021

    Article  CAS  PubMed  Google Scholar 

  26. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095. doi:10.1158/0008-5472.CAN-03-3773

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt H, Bartel F, Kappler M, Wurl P, Lange H, Bache M et al (2005) Gains of 13q are correlated with a poor prognosis in liposarcoma. Mod Pathol 18:638–644. doi:10.1038/modpathol.3800326

    Article  CAS  PubMed  Google Scholar 

  28. Stembalska A, Blin N, Ramsey D, Sasiadek MM (2006) Three distinct regions of deletion on 13q in squamous cell carcinoma of the larynx. Oncol Rep 16:417–421

    CAS  PubMed  Google Scholar 

  29. Sabbir MG, Roy A, Mandal S, Dam A, Roychoudhury S, Panda CK (2006) Deletion mapping of chromosome 13q in head and neck squamous cell carcinoma in Indian patients: correlation with prognosis of the tumour. Int J Exp Pathol 87:151–161. doi:10.1111/j.0959-9673.2006.00467.x

    Article  CAS  PubMed  Google Scholar 

  30. Weiss MM, Kuipers EJ, Postma C, Snijders AM, Pinkel D, Meuwissen SG et al (2004) Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 26:307–317

    CAS  PubMed  Google Scholar 

  31. Yu W, Inoue J, Imoto I, Matsuo Y, Karpas A, Inazawa J (2003) GPC5 is a possible target for the 13q31–q32 amplification detected in lymphoma cell lines. J Hum Genet 48:331–335

    CAS  PubMed  Google Scholar 

  32. Hossain A, Kuo MT, Saunders GF (2006) Mir-17–5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26:8191–8201. doi:10.1128/MCB.00242-06

    Article  CAS  PubMed  Google Scholar 

  33. Kovalchuk O, Tryndyak VP, Montgomery B, Boyko A, Kutanzi K, Zemp F et al (2007) Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications and aberrant microRNA expression. Cell Cycle 6:2010–2018

    CAS  PubMed  Google Scholar 

  34. Choi C, Kim MH, Juhng SW (1998) Loss of heterozygosity on chromosome XP22.2–p22.13 and Xq26.1–q27.1 in human breast carcinomas. J Korean Med Sci 13:311–316

    CAS  PubMed  Google Scholar 

  35. Choi C, Cho S, Horikawa I, Berchuck A, Wang N, Cedrone E et al (1997) Loss of heterozygosity at chromosome segment Xq25–26.1 in advanced human ovarian carcinomas. Genes Chromosom Cancer 20:234–242. doi:10.1002/(SICI)1098-2264(199711)20:3<234::AID-GCC3>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  36. Loupart ML, Adams S, Armour JA, Walker R, Brammar W, Varley J (1995) Loss of heterozygosity on the X chromosome in human breast cancer. Genes Chromosom Cancer 13:229–238. doi:10.1002/gcc.2870130402

    Article  CAS  PubMed  Google Scholar 

  37. Filmus J (2001) Glypicans in growth control and cancer. Glycobiology 11:19R–23R. doi:10.1093/glycob/11.3.19R

    Article  CAS  PubMed  Google Scholar 

  38. Chen YT, Scanlan MJ, Venditti CA, Chua R, Theiler G, Stevenson BJ et al (2005) Identification of cancer/testis-antigen genes by massively parallel signature sequencing. Proc Natl Acad Sci USA 102:7940–7945. doi:10.1073/pnas.0502583102

    Article  CAS  PubMed  Google Scholar 

  39. Lucas S, De SC, Arden KC, Viars CS, Lethe B, Lurquin C et al (1998) Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res 58:743–752

    CAS  PubMed  Google Scholar 

  40. Simard J, Dumont M, Soucy P, Labrie F (2002) Perspective: prostate cancer susceptibility genes. Endocrinology 143:2029–2040. doi:10.1210/en.143.6.2029

    Article  CAS  PubMed  Google Scholar 

  41. Stephan DA, Howell GR, Teslovich TM, Coffey AJ, Smith L, Bailey-Wilson JE et al (2002) Physical and transcript map of the hereditary prostate cancer region at xq27. Genomics 79:41–50. doi:10.1006/geno.2001.6681

    Article  CAS  PubMed  Google Scholar 

  42. Rapley EA, Crockford GP, Teare D, Biggs P, Seal S, Barfoot R et al (2000) Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet 24:197–200. doi:10.1038/72877

    Article  CAS  PubMed  Google Scholar 

  43. Chen YT, Alpen B, Ono T, Gure AO, Scanlan MA, Biggs WHIII et al (2003) Identification and characterization of mouse SSX genes: a multigene family on the X chromosome with restricted cancer/testis expression. Genomics 82:628–636. doi:10.1016/S0888-7543(03)00183-6

    Article  CAS  PubMed  Google Scholar 

  44. Zendman AJ, Van Kraats AA, Weidle UH, Ruiter DJ, Van Muijen GN (2002) The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing’s sarcoma. Int J Cancer 99:361–369. doi:10.1002/ijc.10371

    Article  CAS  PubMed  Google Scholar 

  45. Schroer A, Schneider S, Ropers H, Nothwang H (1999) Cloning and characterization of UXT, a novel gene in human Xp11, which is widely and abundantly expressed in tumor tissue. Genomics 56:340–343. doi:10.1006/geno.1998.5712

    Article  CAS  PubMed  Google Scholar 

  46. Jazaeri AA, Chandramouli GV, Aprelikova O, Nuber UA, Sotiriou C, Liu ET et al (2004) BRCA1-mediated repression of select X chromosome genes. J Transl Med 2:32. doi:10.1186/1479-5876-2-32

    Article  PubMed  Google Scholar 

  47. Rakheja D, Kapur P, Tomlinson GE, Margraf LR (2005) Pediatric renal cell carcinomas with Xp11.2 rearrangements are immunoreactive for hMLH1 and hMSH2 proteins. Pediatr Dev Pathol 8:615–620. doi:10.1007/s10024-005-0148-y

    Article  CAS  PubMed  Google Scholar 

  48. Timmer T, Terpstra P, van den BA, Veldhuis PM, Ter EA, van der Veen AY, Kok K, Naylor SL, Buys CH (1999) An evolutionary rearrangement of the Xp11.3–11.23 region in 3p21.3, a region frequently deleted in a variety of cancers. Genomics 60:238–240. doi:10.1006/geno.1999.5878

    Article  CAS  PubMed  Google Scholar 

  49. Fu HJ, Zhu J, Yang M, Zhang ZY, Tie Y, Jiang H et al (2006) A novel method to monitor the expression of microRNAs. Mol Biotechnol 32:197–204. doi:10.1385/MB:32:3:197

    Article  CAS  PubMed  Google Scholar 

  50. Lao K, Xu NL, Yeung V, Chen C, Livak KJ, Straus NA (2006) Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem Biophys Res Commun 343:85–89. doi:10.1016/j.bbrc.2006.02.106

    Article  CAS  PubMed  Google Scholar 

  51. Lao K, Xu NL, Sun YA, Livak KJ, Straus NA (2007) Real time PCR profiling of 330 human micro-RNAs. Biotechnol J 2:33–35. doi:10.1002/biot.200600119

    Article  CAS  PubMed  Google Scholar 

  52. Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT et al (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA 103:17834–17839. doi:10.1073/pnas.0604129103

    Article  CAS  PubMed  Google Scholar 

  53. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50. doi:10.1038/ng.2007.30

    Article  CAS  PubMed  Google Scholar 

  54. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833. doi:10.1038/nature03552

    Article  CAS  PubMed  Google Scholar 

  55. Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC et al (2008) MYCN regulates oncogenic microRNAs in neuroblastoma. Int J Cancer 122:699–704. doi:10.1002/ijc.23153

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki A, Shibata T, Shimada Y, Murakami Y, Horii A, Shiratori K et al (2008) Identification of SMURF1 as a possible target for 7q21.3–22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization. Cancer Sci 99:986–994. doi:10.1111/j.1349-7006.2008.00779.x

    Article  CAS  PubMed  Google Scholar 

  57. Law FB, Chen YW, Wong KY, Ying J, Tao Q, Langford C et al (2007) Identification of a novel tumor transforming gene GAEC1 at 7q22 which encodes a nuclear protein and is frequently amplified and overexpressed in esophageal squamous cell carcinoma. Oncogene 26:5877–5888. doi:10.1038/sj.onc.1210390

    Article  CAS  PubMed  Google Scholar 

  58. Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H et al (2008) Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17–92 microRNA cluster. Cancer Res 68:5540–5545. doi:10.1158/0008-5472.CAN-07-6460

    Article  CAS  PubMed  Google Scholar 

  59. Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene 26:6099–6105. doi:10.1038/sj.onc.1210425

    Article  CAS  PubMed  Google Scholar 

  60. Johannsdottir HK, Jonsson G, Johannesdottir G, Agnarsson BA, Eerola H, Arason A et al (2006) Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer 119:1052–1060. doi:10.1002/ijc.21934

    Article  CAS  PubMed  Google Scholar 

  61. Thornton DE, Theil K, Payson R, Balcerzak SP, Chiu IM (1991) Characterization of the 5q-breakpoint in an acute nonlymphocytic leukemia patient using pulsed-field gel electrophoresis. Am J Med Genet 41:557–565. doi:10.1002/ajmg.1320410437

    Article  CAS  PubMed  Google Scholar 

  62. Pettenati MJ, Le Beau MM, Lemons RS, Shima EA, Kawasaki ES, Larson RA et al (1987) Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders. Proc Natl Acad Sci USA 84:2970–2974. doi:10.1073/pnas.84.9.2970

    Article  CAS  PubMed  Google Scholar 

  63. Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D et al (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40:281–283. doi:10.1038/ng.89

    Article  CAS  PubMed  Google Scholar 

  64. Shipley JM, Birdsall S, Clark J, Crew J, Gill S, Linehan M et al (1995) Mapping the X chromosome breakpoint in two papillary renal cell carcinoma cell lines with a t(X;1)(p11.2;q21.2) and the first report of a female case. Cytogenet Cell Genet 71:280–284. doi:10.1159/000134127

    Article  CAS  PubMed  Google Scholar 

  65. Shipley JM, Clark J, Crew AJ, Birdsall S, Rocques PJ, Gill S, Chelly J, Monaco AP, Abe S, Gusterson BA, Cooper CS (1994) The t(X;18)(p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9:1447–1453

    CAS  PubMed  Google Scholar 

  66. Thakur A, Bollig A, Wu J, Liao DJ (2008) Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice. Mol Cancer 7:11. doi:10.1186/1476-4598-7-11

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from Elsa U. Pardee Foundation on microRNA in breast cancer and a grant from NCI, NIH (RO1CA100864) to D.J. Liao. We would like to thank Dr. Fred Bogott for his excellent English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Joshua Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Wu, J., Wu, Sh. et al. Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res Treat 118, 185–196 (2009). https://doi.org/10.1007/s10549-008-0171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0171-6

Keywords

Navigation