Skip to main content

Advertisement

Log in

Validation of cyclin D1/CDK4 as an anticancer drug target in MCF-7 breast cancer cells: Effect of regulated overexpression of cyclin D1 and siRNA-mediated inhibition of endogenous cyclin D1 and CDK4 expression

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

We have examined the role of cyclin D1 and cyclin-dependent kinase-4 (CDK4) in the cell cycle progression and proliferation of MCF-7 breast cancer cells. Forced expression of cyclin D1 using a tetracycline-regulated expression system, and suppression of endogenous cyclin D1 and CDK4 using small interfering RNA (siRNA) were used to validate this protein complex as a drug target in cancer drug discovery. Overexpression of cyclin D1 increased both phosphorylation of the retinoblastoma gene product (RB) and passage through the G1–S phase transition, resulting in increased proliferation of cells. When cyclin D1 expression was shut off, growth rates fell below those seen in control cell lines transfected with the vector, indicating an increased dependence on this protein for proliferation. Inhibition of endogenous cyclin D1 or CDK4 expression by RNA interference resulted in hypophosphorylation of RB and accumulation of cells in G1. These results support the prevailing view that pharmacological inhibition of cyclin D1/CDK4 complexes is a useful strategy to inhibit the growth of tumors. Furthermore, since MCF-7 cells appear to be dependent on this pathway for their continued proliferation, it is a suitable cell line to test novel cyclin D1/CDK4 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Massague J, G1 cell cycle control and cancer Nature 432:298–306, 2004

    Article  PubMed  CAS  Google Scholar 

  2. Sherr CJ, Roberts JM, CDK inhibitors: positive and negative regulators of G1 progression Gene Dev 13: 1501–1512, 1999

    Article  PubMed  CAS  Google Scholar 

  3. Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC, Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1 Cell 98: 859–869, 1999

    Article  PubMed  CAS  Google Scholar 

  4. Dyson N, The regulation of E2F by pRB-family proteins Gene Dev 12: 2245–2262, 1998

    Article  PubMed  CAS  Google Scholar 

  5. Roovers K, Assoian RK, Integrating the MAP kinase signal into the G1 phase cell cycle machinary BioEssays 22: 818–826, 2000

    Article  PubMed  CAS  Google Scholar 

  6. Vivanco I, Sawyers CL, The phosphotidylinositol 3-kinase-Akt pathway in human cancer Nature Rev Cancer 2: 489–501, 2002

    Article  CAS  Google Scholar 

  7. Hanahan D, Weinberg RA, The hallmarks of cancer Cell 100: 57–70, 2000

    Article  PubMed  CAS  Google Scholar 

  8. Hall M, Peters G, Genetic alterations of cyclins, cyclin-dependent kinases, and cdk inhibitors in human cancer Adv Cancer Res 68: 67–108, 1996

    Article  PubMed  CAS  Google Scholar 

  9. Michalides RJ, Cell cycle regulators: mechanisms and their role in aetiology, prognosis, and treatment of cancer J Clin Pathol 52: 555–568, 1999

    PubMed  CAS  Google Scholar 

  10. Dai Y, Grant S, Cyclin-dependent kinase inhibitors Curr Opinion Pharmacol 3: 362–370, 2003

    Article  CAS  Google Scholar 

  11. Soni R, O’Reilly T, Furet P, Muller L, Stephan C, Zumstein-Mecker S, Fretz H, Fabbro D, Chaudhuri B, Selective in vivo and in vitro effects of a small molecule inhibitor of cyclin-dependent kinase 4 J Natl Cancer Inst 93: 436–446, 2001

    Article  PubMed  CAS  Google Scholar 

  12. Engler TA, Furness K, Malhotra S, Sanchez-Martinez C, Shih C, Xie W, Zhu G, Zhou X, Conner S, Faul MM, Sullivan KA, Kolis SP, Brooks HB, Patel B, Schultz RM, DeHahn TB, Kirmani K, Spencer CD, Watkins SA, Considine EL, Dempsey JA, Ogg CA, Stamm NB, Anderson BD, Campbell RM, Vasudevan V, Lytle ML, Novel, potent and selective cyclin D1/CDK4 inhibitors: indolo[6,7-a]pyrrolo[3,4-c]carbazoles Bioorg Med Chem Lett 13: 2261–2267, 2003

    Article  PubMed  CAS  Google Scholar 

  13. Fry DW, Harvey PJ, Keller PR, Elliot WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL, Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts Mol Cancer Ther 3: 1427–1437, 2004

    PubMed  CAS  Google Scholar 

  14. Buckley MF, Sweeney KJE, Hamilton JA, Sini RL, Manning DL, Nicholson RI, de Fazio A, Watts CKW, Musgrove EA, Sutherland RL, Expression and amplification of cyclin genes in human breast cancer Oncogene 8: 2127–2133, 1993

    PubMed  CAS  Google Scholar 

  15. Tam SW, Theodoras AM, Shay JW, Draetta GF, Pagano M, Differential expression and regulation of cyclin D1 protein in normal and tumor human cells: association with Cdk4 is required for cyclin D1 function in G1 progression Oncogene 9: 2663–2674, 1994

    PubMed  CAS  Google Scholar 

  16. Gossen M, Bujard H, Tight control of gene expression in mammalian cells by tetracycline-responsive promoters Proc Natl Acad Sci USA 89: 5547–5551, 1992

    Article  PubMed  CAS  Google Scholar 

  17. Zarkowska T, Mittnacht S, Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases J Biol Chem 272: 12738–12746, 1997

    Article  PubMed  CAS  Google Scholar 

  18. Shapiro GI, Harper JW, Anticancer drug targets: cell cycle and checkpoint control J Clin Invest 104: 1645–1653, 1999

    Article  PubMed  CAS  Google Scholar 

  19. Tetsu O, McCormick F, Proliferation of cancer cells despite CDK2 inhibition Cancer Cell 3: 233–245, 2003

    Article  PubMed  CAS  Google Scholar 

  20. Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kitrell FS, Zahnow CA, Patterson N, Golub TR, Ewen ME, A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer Cell 114: 323–334, 2003

    Article  PubMed  CAS  Google Scholar 

  21. Weinstein IB, Addiction to oncogenes – the Achilles heel of cancer Science 297: 63–64, 2002

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  22. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM, Felsher DW, Sustained loss of a neoplastic phenotype by brief inactivation of MYC Science 297: 102–104, 2002

    Article  PubMed  CAS  Google Scholar 

  23. Boxer RB, Jang JW, Sintasath L, Chodosh LA, Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation Cancer Cell 6: 577–586, 2004

    Article  PubMed  CAS  Google Scholar 

  24. Huettner CS, Zhang P, Van Etten RA, Tenen DG, Reversibility of acute B-cell leukaemia induced by BCR-ABL1 Nature Genet 24: 57–60, 2000

    Article  PubMed  CAS  Google Scholar 

  25. Hingorani SR, Tuveson DA, Targeting oncogene dependence and resistance Cancer Cell 3: 414–417, 2003

    Article  PubMed  CAS  Google Scholar 

  26. Weinstein IB, Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis Carcinognesis 21: 857–864, 2000

    Article  CAS  Google Scholar 

  27. Janicke RU, Sprengart ML, Wati MR, Porter AG, Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis J Biol Chem 273: 9357–9360, 1998

    Article  PubMed  CAS  Google Scholar 

  28. Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD, Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin and etoposide-induced apoptosis Cancer Res 61: 348–354, 2001

    PubMed  CAS  Google Scholar 

  29. Musgrove EA, Lee CSL, Buckley MF, Sutherland RL, Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle Proc Natl Acad Sci USA 91: 8022–8026, 1994

    Article  PubMed  CAS  Google Scholar 

  30. Zwijsen RM, Klompmaker R, Wientjens EBHGM, Kristel PMP, van der Burg B, Michalides RJAM, Cyclin D1 triggers autonomous growth of breast cancer cells by governing cell cycle exit Mol Cell Biol 16: 2554–2560, 1996

    PubMed  CAS  Google Scholar 

  31. Wilcken NRC, Prall OWJ, Musgrove EA, Sutherland RL, Inducible overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory effects of antiestrogens Clin Cancer Res 3: 849–854, 1997

    PubMed  CAS  Google Scholar 

  32. Resnitzky D, Gossen M, Bujard H, Reed SI, Acceleration of the G1/S phase transition by expression of cyclin D1 and E with an inducible system Mol Cell Biol 14: 1669–1679, 1994

    PubMed  CAS  Google Scholar 

  33. Sofer-Levi Y, Resnitzky D, Apoptosis induced by ectopic expression of cyclin D1 but not cyclin E Oncogene 13: 2431–2437, 1996

    PubMed  CAS  Google Scholar 

  34. Han EK-H, Begemann M, Sgambato A, Soh J-W, Doki Y, Xing W-Q, Liu W, Weinstein IB, Increased expression of cyclin D1 in a murine mammary epithelial cell line induces p27kip1, inhibits growth and enhances apoptosis Cell Growth Differ 7: 699–710, 1996

    PubMed  CAS  Google Scholar 

  35. Paddison PJ, Hannon GJ, RNA interference: the new somatic cell genetics? Cancer Cell 2: 17–23, 2002

    Article  PubMed  CAS  Google Scholar 

  36. Novina CD, Sharp PA, The RNAi revolution Nature 430: 161–164, 2004

    Article  PubMed  CAS  Google Scholar 

  37. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BRG, Activation of the interferon system by short-interfering RNAs Nat Cell Biol 5: 834–839, 2003

    Article  PubMed  CAS  Google Scholar 

  38. Hirama T, Koeffler HP, Role of cyclin-dependent kinase inhibitors in the development of cancer Blood 86: 841–854, 1995

    PubMed  CAS  Google Scholar 

  39. Sharpless NE, DePinho RA, The INK4A/ARF locus and its two gene products Curr Opin Genet Dev 9: 22–30, 1999

    Article  PubMed  CAS  Google Scholar 

  40. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde K-H, Beach D, A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T-lymphocytes in a human melanoma Science 269: 1281–1284, 1995

    Article  PubMed  CAS  Google Scholar 

  41. Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N, Dracopoli NC, Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma Nat Genet 12: 97–99, 1996

    Article  PubMed  CAS  Google Scholar 

  42. Otterson GA, Kratzke RA, Coxon A, Kim YW, Kaye FJ, Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retain wildtype RB Oncogene 9: 3375–3378, 1994

    PubMed  CAS  Google Scholar 

  43. Aagaard L, Lukas J, Bartkova J, Kjerlulff AA, Strauss M, Bartek J: Aberration of the p16Ink4 and retinoblastoma tumour-suppressor genes occur in distinct sub-sets of human cancer cell lines Int J Cancer 61(1): 115–120, 1995

    Article  PubMed  CAS  Google Scholar 

  44. Medema RH, Herrera RE, Lam F, Weinberg RA, Growth suppression by p16ink4 requires functional retinoblastoma protein Proc Natl Acad Sci USA 92: 6289–6293, 1995

    Article  PubMed  CAS  Google Scholar 

  45. Bruce JL, Hurford RK, Classon M, Koh J, Dyson N, Requirements for cell cycle arrest by p16INK4a Mol Cell 6: 737–742, 2000

    Article  PubMed  CAS  Google Scholar 

  46. Serrano M, Lee HW, Chin L, Cordon-Cardo C, Beach D, DePinho RA: Role of the INK4a locus in tumor suppresion and cell moratlity. Cell 85: 27–37, 1996

    Google Scholar 

  47. Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA, Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis Nature 413: 86–90, 2001

    Article  PubMed  CAS  Google Scholar 

  48. Krimpenfort P, Quon KC, Mool WJ, Loonstra A, Berns A, Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice Nature 413: 83–86, 2001

    Article  PubMed  CAS  Google Scholar 

  49. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ, Tumor suppression at the mouse INK4a locus mediated by the alternate reading frame product p19ARFCell 91: 649–659, 1997

    Article  PubMed  CAS  Google Scholar 

  50. Robles AI, Larcher F, Whalin RB, Murillas R, Richie E, Giminez-Conti IB, Jorcano JL, Conti CJ, Expression of cyclin D1 in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia Proc Natl Acad Sci USA 93: 7634–7638, 1996

    Article  PubMed  CAS  Google Scholar 

  51. Mueller A, Odze R, Jenkins TD, Shahsesfaei A, Nakagawa H, Inomoto T, Rustgi AK, A transgenic mouse model with cyclin D1 overexpression results in cell cycle, epidermal growth factor receptor, and p53 abnormalities Cancer Res 57: 5542–5549, 1997

    PubMed  CAS  Google Scholar 

  52. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV, Mammary hyperplasia and carcinoma in MMTV-cyclin D1 trangenic mice Nature 369: 669–671, 1994

    Article  PubMed  CAS  Google Scholar 

  53. Deane NG, Parker MA, Aramandla R, Diehl L, Lee WJ, Washington MK, Nanney LB, Shyr Y, Beauchamp RD, Hepatocellular carcinoma results from chronic cyclin D1 overexpression in transgenic mice Cancer Res 61: 5389–5395, 2001

    PubMed  CAS  Google Scholar 

  54. Sotillo R, Dubus P, Martin J, de la Cueva E, Ortega S, Malumbres M, Barbacid M, Wide spectrum of tumors in knock-in mice carying a Cdk4 protein insensitive to INK4 inhibitors EMBO J 20: 6637–6647, 2001

    Article  PubMed  CAS  Google Scholar 

  55. Yu Q, Geng Y, Sicinski P, Specific protection against breast cancers by cyclin D1 ablation Nature 411: 1017–1021, 2001

    Article  PubMed  CAS  Google Scholar 

  56. Lee RJ, Albanese C, Fu M, D’Amico M, Lin B, Watanabe G, Haines I, G.K., Siegel PM, Hung MC, Yarden Y, Horowitz JM, Muller WJ, Pestell RG, Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway Mol Cell Biol 20: 672–683, 2000

    Article  PubMed  CAS  Google Scholar 

  57. Arber N, Doki Y, Han EK, Sgambato A, Zhou P, Kim NH, Delohery T, Klein MG, Holt PR, Weinstein IB, Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells Cancer Res 57: 1569–1574, 1997

    PubMed  CAS  Google Scholar 

  58. Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M, Bartek K, Cyclin D1 protein expression and function in human breast cancer Int J Cancer 57: 353–361, 1994

    Article  PubMed  CAS  Google Scholar 

  59. Uto H, Ido A, Moriuchi A, Onaga Y, Nagata K, Onaga M, Tahara Y, Hori T, Hirono S, Hayashi K, Tsubouchi H, Transduction of antisense cyclin D1 using two-step gene transfer inhibits the growth of rat hepatoma cells Cancer Res 61: 4779–4783, 2001

    PubMed  CAS  Google Scholar 

  60. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A, The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway Proc Natl Acad Sci USA 96: 5522–5527, 1999

    Article  PubMed  CAS  Google Scholar 

  61. Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O’Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW, Identification of CDK4 as a target of c-MYC Proc Natl Acad Sci USA 97: 2229–2234, 2000

    Article  PubMed  CAS  Google Scholar 

  62. Diehl JA, Cheng M, Roussel MF, Sherr CJ, Glycogen synthase kinase-3β-regulates cyclin D1 proteolysis and subcellular localization Gene Dev 12: 3499–3511, 1998

    Article  PubMed  CAS  Google Scholar 

  63. Galactionov K, Jessus C, Beach D, Raf1 interaction with cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation Gene Dev 9: 1046–1058, 1995

    Article  PubMed  Google Scholar 

  64. Galactionov K, Chen X, Beach D, Cdc25 cell cycle phosphatase as a target of c-myc Nature 382: 511–517, 1996

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar K. Rabindran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grillo, M., Bott, M.J., Khandke, N. et al. Validation of cyclin D1/CDK4 as an anticancer drug target in MCF-7 breast cancer cells: Effect of regulated overexpression of cyclin D1 and siRNA-mediated inhibition of endogenous cyclin D1 and CDK4 expression. Breast Cancer Res Treat 95, 185–194 (2006). https://doi.org/10.1007/s10549-005-9066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-005-9066-y

Keywords

Navigation