Skip to main content

Advertisement

Log in

Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

The objective of this study is to compare the predictive accuracy of a neural network (NN) model versus the standard Cox proportional hazard model. Data about the 3811 patients included in this study were collected within the ‘El Álamo’ Project, the largest dataset on breast cancer (BC) in Spain. The best prognostic model generated by the NN contains as covariates age, tumour size, lymph node status, tumour grade and type of treatment. These same variables were considered as having prognostic significance within the Cox model analysis. Nevertheless, the predictions made by the NN were statistically significant more accurate than those from the Cox model (p<0.0001). Seven different time intervals were also analyzed to find that the NN predictions were much more accurate than those from the Cox model in particular in the early intervals between 1–10 and 11–20 months, and in the later one considered from 61 months to maximum follow-up time (MFT). Interestingly, these intervals contain regions of high relapse risk that have been observed in different studies and that are also present in the analyzed dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilsenbeck SG, Ravdin PM, de Moor CA, (1998) Time-dependence of hazard ratios for prognostic factors in primary breast cancer Breast Cancer Res Treat 52:227–237

    Article  PubMed  CAS  Google Scholar 

  2. Cox DR, (1972) Regression models and life tables J R Stat Soc 34:187–202

    Google Scholar 

  3. Ohno-Machado L, (1997) A comparison of Cox proportional hazards and artificial neural network models for medical prognosis Comput Biol Med 27:55–65

    Article  PubMed  CAS  Google Scholar 

  4. Xiang A, Lapuerta P, Ryutov A, Buckley J, Azen S, (2000) Comparison of the performance of neural network methods and Cox regression for censored survival data Comput Stat and Data Anal 34:243–257

    Article  Google Scholar 

  5. Burke H, Goodman P, Rosen D, Henson D, Weinstein J, Harrel F, Marks J, Winchester D, Bostwick D: Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 79: 857–862, 1997

    Google Scholar 

  6. Brown SF, Branford AJ, Moran W, (1997) On the use of artificial neural networks for the analysis of survival data IEEE Trans Neural Networks 8:1071–1077

    Article  CAS  Google Scholar 

  7. Faraggi D, Simon R, Yaskil E, Kramar A, (1997) Bayesian neural network models for censored data Biometrica J 5:519–532

    Article  Google Scholar 

  8. Ripley RM, Harris AL, Tarassenko L, (1998) Neural network models for breast cancer prognosis Neural Comput Appl 7:367–375

    Article  Google Scholar 

  9. Lundin M, Lundin J, Burke HB, Toikkanen S, Pylkkänen Joensuu H, (1999) Artificial neural networks applied to survival prediction in breast cancer Oncology 57:281–286

    Article  PubMed  CAS  Google Scholar 

  10. Jerez JM, Gómez JA, Ramos G, Muñoz J, Alba E, (2003) A combined neural network and decision trees model for prognosis of breast cancer relapse Artif Intell Med 27:45–63

    Article  PubMed  Google Scholar 

  11. Ravdin PM, Clark GM, Hilsenbeck G, Owens MA, Vendely P, Pandian MR, McGuire WL, (1992) A demonstration that breast cancer recurrence can be predicted by neural network analysis Breast Cancer Res Treat 21:47–53

    Article  PubMed  CAS  Google Scholar 

  12. De Laurentis M, Ravdin PM, (1994) A technique for using neural network analysis to perform survival analysis of censored data Cancer Lett 77:127–138

    Article  PubMed  Google Scholar 

  13. De Laurentiis M, De Placido S, Bianco AR, Clark GM, Ravdin PM, (1999) A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients Clin Cancer Res 5:4133–4139

    PubMed  Google Scholar 

  14. Boracchi P, Biganzoli E, Marubini E, (2001) Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients Stat Med 20:3677–3694

    Article  PubMed  CAS  Google Scholar 

  15. Liestol K, Andersen PK, (2002) Updating of covariates and choice of time origin in survival analysis: problems with vaguely defined disease states Stat Med 21:3701–3714

    Article  PubMed  Google Scholar 

  16. Biganzoli E, Boracchi P, Coradini D, Daidone MG, Marubini E, (2003) Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors Ann Oncol 14:1484–1493

    Article  PubMed  CAS  Google Scholar 

  17. Biganzoli E, Boracchi P, Mariani L, Marubini E, (1998) Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach Stat Med 17:1169–1186

    Article  PubMed  CAS  Google Scholar 

  18. Dreiseitl S, Ohno-Machado L, (2002) Logistic regression and artificial neural network classification models: a methodology review J Biomed Inf 35:352–359

    Article  Google Scholar 

  19. Fitzgibbons PL, Page DL, Weaver D, Thor AD, Allred DC, Clark GM, Ruby SG, O’Malley F, Simpson JF, Connolly JL, Hayes DF, Edge SB, Lichter A, Schnitt SJ, (2000) Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999 Arch Pathol Lab Med 124:966

    PubMed  CAS  Google Scholar 

  20. Kroman N, Jensen MB, Wohlfahrt J, Mouridsen HT, Andersen PK, Melbye M, (2000) Factors influencing the effect of age on prognosis in breast cancer: population based study BMJ 320:474–478

    Article  PubMed  CAS  Google Scholar 

  21. Colleoni M, Rotmensz N, Robertson C, Orlando L, Viale G, Renne G, Luini A, Veronesi P, Intra M, Orecchia R, Catalano G, Galimberti V, Nole F, Martinelli G, Goldhirsch A, (2002) Very young women (<35 years) with operable breast cancer: features of disease at presentation Ann Oncol 13:273–279

    Article  PubMed  CAS  Google Scholar 

  22. Therneau TM, Grambsch PM, (2000) Modelling Survival Data: Extending Survival Data. Springer-Verlag, New York, NY

    Google Scholar 

  23. Fox J, (2002) An R and S-Plus companion to applied regression. Sage Publications, Thousand Oaks, CA

    Google Scholar 

  24. Breslow NE, (1974) Covariance analysis of censored survival data Biometrics 30:89–99

    Article  PubMed  CAS  Google Scholar 

  25. Shao J, Tu D, (1995) The Jacknife and Bootstrap. Springer Verlag, New York, NY

    Google Scholar 

  26. Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA, (1982) Evaluating the yield of medical tests J Am Med Assoc 247:2543–2546

    Article  Google Scholar 

  27. Harrell FE, Lee KL, Califf RM, Pryor DB, Rosati RA, (1984) Regression modeling strategies for improved prognostic prediction Stat Med 3:143–152

    Article  PubMed  Google Scholar 

  28. J. Hanley B Mc Neil 1982 The meaning and use of the area under the receiver operating characteristic (ROC) curve. Radiology 143: 29–36

    PubMed  CAS  Google Scholar 

  29. Hanley JA, McNeil BJ, (1983) A method for comparing the areas under receiver operating characteristic curves derived from the same cases Radiology 148:839–843

    PubMed  CAS  Google Scholar 

  30. Clark TG, Bradburn MJ, Love SB, Altman DG, (2003) Survival Analysis Part IV: Further concepts and methods in survival analysis Br J Cancer 89:781–786

    Article  PubMed  CAS  Google Scholar 

  31. S Dreiseitl L Ohno-Machado H Harald Kittler S Vinterbo H Billhardt M Binder 2001 A comparison of machine learning methods for the diagnosis of pigmented skin lesions J Biomed Inform 34: 28–36

    Article  PubMed  CAS  Google Scholar 

  32. Greiner M, Pfeiffer D, Smith RD, (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests Prev Vet Med 45:23–41

    Article  PubMed  CAS  Google Scholar 

  33. Demicheli R, Abbattista A, Miceli R, Valagussa P, Bonadonna G, (1996) Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy Breast Cancer Res Treat 41:177–185

    Article  PubMed  CAS  Google Scholar 

  34. Saphner T, Tormey DC, Gray R, (1996) Annual hazard rates of recurrence for breast cancer after primary therapy J Clin Oncol 14:2738–2746

    PubMed  CAS  Google Scholar 

  35. Karrison TG, Ferguson DJ, Meier P, (1999) Dormancy of mammary carcinoma after mastectomy J Natl Cancer Inst 91:80–85

    Article  PubMed  CAS  Google Scholar 

  36. Retsky MW, Wardwell RH, Swartzendruber DE, Headley DL, (1987) Prospective computerized simulation of breast cancer: comparison of computer predictions with nine sets of biological and clinical data Cancer Res 47:4982–4987

    PubMed  CAS  Google Scholar 

  37. Demicheli R, Valagussa P, Bonadonna G, (2001) Does surgery modify growth kinetics of breast cancer micrometastases? Br J Cancer 85:490–492

    Article  PubMed  CAS  Google Scholar 

  38. Bloom HJG, Richardson WW, Harries EJ, (1962) Natural history of untreated breast cancer (1905–1933) BMJ 2:213–221

    Article  PubMed  CAS  Google Scholar 

  39. Demicheli R, Miceli R, Valagussa P, Bonadonna G, (2000) Re: dormancy of mammary carcinoma after mastectomy J Natl Cancer Inst 92:347–348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support from APOMA (Málaga, Spain) under contract No. 8.06/47/2176 is acknowledged. The authors also thank Esther Mahillo (GEICAM) for her collaboration and coordination of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Franco.

Additional information

Address for offprints and correspondence: Leonardo Franco, Depto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Campus de Teatinos S/N, 29071, Málaga, Spain; Tel.: +34-952-133304; Fax: +34-952-133397; E-mail: Leonardo.Franco@psy.ox.ac.uk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerez, J., Franco, L., Alba, E. et al. Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks. Breast Cancer Res Treat 94, 265–272 (2005). https://doi.org/10.1007/s10549-005-9013-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-005-9013-y

Keywords

Navigation