Skip to main content

Advertisement

Log in

Free-Field Cortical Steady-State Evoked Potentials in Cochlear Implant Users

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Auditory steady-state evoked potentials (SS-EPs) are phase-locked neural responses to periodic stimuli, believed to reflect specific neural generators. As an objective measure, steady-state responses have been used in different clinical settings, including measuring hearing thresholds of normal and hearing-impaired subjects. Recent studies are in favor of recording these responses as a part of the cochlear implant (CI) device-fitting procedure. Considering these potential benefits, the goals of the present study were to assess the feasibility of recording free-field SS-EPs in CI users and to compare their characteristics between CI users and controls. By taking advantage of a recently developed dual-frequency tagging method, we attempted to record subcortical and cortical SS-EPs from adult CI users and controls and measured reliable subcortical and cortical SS-EPs in the control group. Independent component analysis (ICA) was used to remove CI stimulation artifacts, yet subcortical responses of several CIs were heavily contaminated by these artifacts. Consequently, only cortical SS-EPs were compared between groups, which were found to be larger in the controls. The lower cortical SS-EPs’ amplitude in CI users might indicate a reduction in neural synchrony evoked by the modulation rate of the auditory input across different neural assemblies in the auditory pathway. The brain topographies of cortical auditory SS-EPs, the time course of cortical responses, and the reconstructed cortical maps were highly similar between groups, confirming their neural origin and possibility to obtain such responses also in CI recipients. As for subcortical SS-EPs, our results highlight a need for sophisticated denoising algorithms to pinpoint and remove artifactual components from the biological response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

To protect the privacy of participants, anonymized data will be available to investigators upon request.

Abbreviations

CIs:

Cochlear Implants

EEG:

Electroencephalography

ASSR:

Auditory Steady-State Responses

EASSR:

Electrically Evoked ASSR

SS-Eps:

Steady-State Evoked Potentials

ICA:

Independent Component Analysis

DFT:

Discrete Fourier transform

FFT:

Fast Fourier transform

References

  • Adrian ED, Matthews BHC (1934) The Berger rhythm: potential changes from the occipital lobes in man. Brain 57(4):355–385

    Article  Google Scholar 

  • Alemi R, Lehmann A (2019) Middle latency responses to optimized chirps in adult cochlear implant users. J Am Acad Audiol 30(5):396–405

    Article  PubMed  Google Scholar 

  • Atencio CA, Schreiner CE (2010) Laminar diversity of dynamic sound processing in cat primary auditory cortex. J Neurophysiol 103(1):192–205

    Article  PubMed  Google Scholar 

  • Atencio CA, Sharpee TO, Schreiner CE (2009) Hierarchical computation in the canonical auditory cortical circuit. Proc Natl Acad Sci 106(51):21894–21899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attina V, Mina F, Stahl P, Duroc Y, Veuillet E, Truy E, Thai-Van H (2017) A new method to test the efficiency of Cochlear Implant artifacts removal from Auditory Evoked Potentials. IEEE Trans Neural Syst Rehabil Eng 25(12):2453–2460

    Article  PubMed  Google Scholar 

  • Barbour DL, Callaway EM (2008) Excitatory local connections of superficial neurons in rat auditory cortex. J Neurosci 28(44):11174–11185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck AA, Rossion B, Samson D (2018) An objective neural signature of rapid perspective taking. Soc Cogn Affect Neurosci 13(1):72–79

    Article  PubMed  Google Scholar 

  • Bidelman GM (2015) Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR. Hear Res 323:68–80

    Article  PubMed  Google Scholar 

  • Budinger E, Kanold PO (2018) Auditory Cortex Circuits. The Mammalian Auditory Pathways. Springer, Cham, pp 199–233

    Chapter  Google Scholar 

  • Castañeda-Villa N, James CJ (2010) Independent component analysis for auditory evoked potentials and cochlear implant artifact estimation. IEEE Trans Biomed Eng 58(2):348–354

    Article  PubMed  Google Scholar 

  • Clark G (2004) Cochlear Implants. In: Greenberg Steven, Ainsworth William A, Fay Richard R (eds) Speech Processing in the Auditory System. Springer Handbook of Auditory Research, New York, p 18

    Google Scholar 

  • Coffey EBJ, Nicol T, White-Schwoch T, Chandrasekaran B, Krizman J, Skoe E, Kraus N (2019) Evolving perspectives on the sources of the frequency-following response. Nat Commun 10(1):1–10

    Article  CAS  Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1):55–67

    Article  CAS  PubMed  Google Scholar 

  • Debener S, Hine J, Bleeck S, Eyles J (2008) Source localization of auditory evoked potentials after cochlear implantation. Psychophysiology 45(1):20–24

    PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Deprez, H., Hofmann, M., Van Wieringen, A., Wouters, J., & Moonen, M. (2014). Cochlear implant artifact rejection in electrically evoked auditory steady state responses. In 2014 22nd European Signal Processing Conference (EUSIPCO) (pp. 1995–1999). IEEE.

  • Deprez H, Gransier R, Hofmann M, van Wieringen A, Wouters J, Moonen M (2017a) Characterization of cochlear implant artifacts in electrically evoked auditory steady-state responses. Biomed Signal Process Control 31:127–138

    Article  Google Scholar 

  • Deprez H, Gransier R, Hofmann M, van Wieringen A, Wouters J, Moonen M (2017b) Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements. J Neural Eng 15(1):16006

    Article  Google Scholar 

  • Echtioui, A., Zouch, W., Ghorbel, M., Slima, M. Ben, Hamida, A. Ben, & Mhiri, C. (2020). Automated EEG Artifact Detection Using Independent Component Analysis. In 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (pp. 1–5). IEEE.

  • Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. Neuroimage 62(2):911–922

    Article  PubMed  Google Scholar 

  • Farahani ED, Wouters J, van Wieringen A (2019) Contributions of non-primary cortical sources to auditory temporal processing. Neuroimage 191:303–314

    Article  PubMed  Google Scholar 

  • Farahani ED, Wouters J, van Wieringen A (2020) Brain mapping of auditory steady-state responses: A broad view of cortical and subcortical sources. Hum Brain Mapp. https://doi.org/10.1002/hbm.25262

    Article  PubMed  PubMed Central  Google Scholar 

  • Gama N, Peretz I, Lehmann A (2017) Recording the human brainstem frequency-following-response in the free-field. J Neurosci Methods 280:47–53

    Article  PubMed  Google Scholar 

  • George TA, Bones D (1991) Harmonic power flow determination using the fast Fourier transform. IEEE Trans Power Delivery 6(2):530–535

    Article  Google Scholar 

  • Gilley PM, Sharma A, Dorman M, Finley CC, Panch AS, Martin K (2006) Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials. Clin Neurophysiol 117(8):1772–1782

    Article  PubMed  Google Scholar 

  • Glennon E, Svirsky MA, Froemke RC (2020) Auditory cortical plasticity in cochlear implant users. Curr Opin Neurobiol 60:108–114

    Article  CAS  PubMed  Google Scholar 

  • Gramfort A, Papadopoulo T, Olivi E, Clerc M (2010) OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online 9(1):1–20

    Article  Google Scholar 

  • Gransier R, Deprez H, Hofmann M, Moonen M, van Wieringen A, Wouters J (2016) Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts. Hear Res 335:149–160

    Article  PubMed  Google Scholar 

  • Gransier R, Luke R, van Wieringen A, Wouters J (2020) Neural modulation transmission is a marker for speech perception in noise in cochlear implant users. Ear Hear 41(3):591–602

    Article  PubMed  Google Scholar 

  • Groppe DM, Urbach TP, Kutas M (2011) Mass univariate analysis of event-related brain potentials/fields II: Simulation studies. Psychophysiology 48(12):1726–1737

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamzavi J, Baumgartner W, Pok SM, Franz P, Gstoettner W (2003) Variables affecting speech perception in postlingually deaf adults following cochlear implantation. Acta Otolaryngol 123(4):493–498

    Article  PubMed  Google Scholar 

  • Henry MJ, Obleser J (2012) Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proc Natl Acad Sci 109(49):20095–20100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henschke JU, Oelschlegel AM, Angenstein F, Ohl FW, Goldschmidt J, Kanold PO, Budinger E (2018) Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices. Brain Struct Funct 223(3):1165–1190

    PubMed  Google Scholar 

  • Herdman AT, Lins O, Van Roon P, Stapells DR, Scherg M, Picton TW (2002) Intracerebral sources of human auditory steady-state responses. Brain Topogr 15(2):69–86

    Article  PubMed  Google Scholar 

  • Hirschfelder A, Gräbel S, Olze H (2008) The impact of cochlear implantation on quality of life: the role of audiologic performance and variables. Otolaryngol Head Neck Surg 138(3):357–362

    Article  PubMed  Google Scholar 

  • Hofmann M, Wouters J (2010) Electrically evoked auditory steady state responses in cochlear implant users. JARO 11(2):267–282. https://doi.org/10.1007/s10162-009-0201-z

    Article  PubMed  Google Scholar 

  • Hofmann M, Wouters J (2012) Improved electrically evoked auditory steady-state response thresholds in humans. J Assoc Res Otolaryngol 13(4):573–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeng F-C, Abbas PJ, Brown CJ, Miller CA, Nourski KV, Robinson BK (2007) Electrically evoked auditory steady-state responses in guinea pigs. Audiol Neurotol 12(2):101–112

    Article  Google Scholar 

  • Kuwada S, Batra R, Maher VL (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21(2):179–192

    Article  CAS  PubMed  Google Scholar 

  • Lehmann A, Arias DJ, Schönwiesner M (2016) Tracing the neural basis of auditory entrainment. Neuroscience 337:306–314

    Article  CAS  PubMed  Google Scholar 

  • Lenc T, Keller PE, Varlet M, Nozaradan S (2020) Neural and behavioral evidence for frequency-selective context effects in rhythm processing in humans. Cereb Cortex Commun 1(1):tgaa037

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Nie, K., Karp, F., Tremblay, K. L., & Rubinstein, J. T. (2010). Characteristics of stimulus artifacts in EEG recordings induced by electrical stimulation of cochlear implants. In 2010 3rd International Conference on Biomedical Engineering and Informatics (Vol. 2, pp. 799–803). IEEE.

  • Liégeois-Chauvel C, Lorenzi C, Trébuchon A, Régis J, Chauvel P (2004) Temporal envelope processing in the human left and right auditory cortices. Cereb Cortex 14(7):731–740

    Article  PubMed  Google Scholar 

  • Luke R, De Vos A, Wouters J (2017) Source analysis of auditory steady-state responses in acoustic and electric hearing. NeuroImage 147:568–576. https://doi.org/10.1016/j.neuroimage.2016.11.023

    Article  PubMed  Google Scholar 

  • Luts H, Desloovere C, Wouters J (2006) Clinical application of dichotic multiple-stimulus auditory steady-state responses in high-risk newborns and young children. Audiol Neurotol 11(1):24–37

    Article  Google Scholar 

  • Makeig S, Onton J (2011) ERP features and EEG dynamics: an ICA perspective. Oxford Handbook of Event-Related Potential Components, Oxford

    Book  Google Scholar 

  • Makeig S, Bell AJ, Jung T-P, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. Adv Neural Inf Process Syst. https://doi.org/10.1007/978-1-4615-5351-9_17

    Article  Google Scholar 

  • Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG-and MEG-data. J Neurosci Methods 164(1):177–190

    Article  PubMed  Google Scholar 

  • Martin BA (2007) Can the acoustic change complex be recorded in an individual with a cochlear implant? Separating neural responses from cochlear implant artifact. J Am Acad Audiol 18(2):126–140

    Article  PubMed  Google Scholar 

  • Martin BA, Tremblay KL, Korczak P (2008) Speech evoked potentials: from the laboratory to the clinic. Ear Hear 29(3):285–313

    Article  PubMed  Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, de Peralta RG (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222

    Article  PubMed  Google Scholar 

  • Milford CA, Birchall JP (1989) Steady-state auditory evoked potentials to amplitude-modulated tones in hearing-impaired subjects. Br J Audiol 23(2):137–142

    Article  CAS  PubMed  Google Scholar 

  • Mina F, Attina V, Duroc Y, Veuillet E, Truy E, Thai-Van H (2017) Auditory steady state responses and cochlear implants: Modeling the artifact-response mixture in the perspective of denoising. PloS One 12(3):e0174462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mouraux A, Iannetti GD (2008) Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging 26(7):1041–1054

    Article  CAS  PubMed  Google Scholar 

  • Mouraux A, Iannetti GD, Colon E, Nozaradan S, Legrain V, Plaghki L (2011) Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J Neurosci 31(16):6079–6087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller MM, Andersen S, Trujillo NJ, Valdes-Sosa P, Malinowski P, Hillyard SA (2006) Feature-selective attention enhances color signals in early visual areas of the human brain. Proc Natl Acad Sci 103(38):14250–14254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264

    Article  PubMed  Google Scholar 

  • Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B (2015) The steady-state visual evoked potential in vision research: A review. J vis 15(6):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozaradan S (2014) Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Phil Trans R Soc B. https://doi.org/10.1098/rstb.2013.0393

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozaradan S, Peretz I, Missal M, Mouraux A (2011) Tagging the neuronal entrainment to beat and meter. J Neurosci 31(28):10234–10240. https://doi.org/10.1523/JNEUROSCI.0411-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaradan S, Zerouali Y, Peretz I, Mouraux A (2015) Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat. Cereb Cortex 25(3):736–747

    Article  PubMed  Google Scholar 

  • Nozaradan S, Schönwiesner M, Caron-Desrochers L, Lehmann A (2016) Enhanced brainstem and cortical encoding of sound during synchronized movement. NeuroImage. https://doi.org/10.1016/j.neuroimage.2016.07.015

    Article  PubMed  Google Scholar 

  • Nozaradan S, Peretz I, Keller PE (2016) Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Sci Rep. https://doi.org/10.1038/srep20612

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozaradan S, Schwartze M, Obermeier C, Kotz SA (2017) Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex 95:156–168. https://doi.org/10.1016/j.cortex.2017.08.015

    Article  PubMed  Google Scholar 

  • Nozaradan S, Keller PE, Rossion B, Mouraux A (2018) EEG frequency-tagging and input-output comparison in rhythm perception. Brain Topogr 31(2):153–160. https://doi.org/10.1007/s10548-017-0605-8

    Article  PubMed  Google Scholar 

  • Petrus E, Rodriguez G, Patterson R, Connor B, Kanold PO, Lee H-K (2015) Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices. J Neurosci 35(23):8790–8801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard M (1997) Speech audiometry in French-speaking Quebec. Revue D’orthophonie Et D’audiologie 21(4):301–311

    Google Scholar 

  • Picton TW, John SM (2004) Avoiding electromagnetic artifacts when recording auditory steady-state responses. J Am Acad Audiol 15(8):541–554

    Article  PubMed  Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I: Evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190

    Article  CAS  PubMed  Google Scholar 

  • Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses: Respuestas auditivas de estado estable en humanos. Int J Audiol 42(4):177–219

    Article  PubMed  Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell DW, John SM, Schneider BA, Picton TW (2004) Human temporal auditory acuity as assessed by envelope following responses. J Acoust Soc Am 116(6):3581–3593

    Article  PubMed  Google Scholar 

  • Rance Gary, Briggs RJS (2002) Assessment of hearing in infants with moderate to profound impairment: The Melbourne experience with auditory steady-state evoked potential testing. Ann Otol Rhinol Laryngol 111(5):22–28. https://doi.org/10.1177/00034894021110s505

    Article  Google Scholar 

  • Rance G, Rickards FW, Cohen LT, Burton MJ, Clark GM (1993) Steady state evoked potentials: a new tool for the accurate assessment of hearing in cochlear implant candidates. Adv Otorhinolaryngol 48:44–48

    CAS  PubMed  Google Scholar 

  • Rance G, Dowell RC, Rickards FW, Beer DE, Clark GM (1998) Steady-state evoked potential and behavioral hearing thresholds in a group of children with absent click-evoked auditory brain stem response. Ear Hear 19(1):48–61

    Article  CAS  PubMed  Google Scholar 

  • Rees A, Green GGR, Kay RH (1986) Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hear Res 23(2):123–133. https://doi.org/10.1016/0378-5955(86)90009-2

    Article  CAS  PubMed  Google Scholar 

  • Regan D (1966) Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalogr Clin Neurophysiol 20(3):238–248

    Article  CAS  PubMed  Google Scholar 

  • Rossion B, Boremanse A (2011) Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. J vis 11(2):16

    Article  PubMed  Google Scholar 

  • Rossion B, Retter TL, Liu-Shuang J (2020) Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. Eur J Neurosci 52(10):4283–4344

    Article  PubMed  Google Scholar 

  • Sandmann P, Plotz K, Hauthal N, de Vos M, Schönfeld R, Debener S (2015) Rapid bilateral improvement in auditory cortex activity in postlingually deafened adults following cochlear implantation. Clin Neurophysiol 126(3):594–607

    Article  PubMed  Google Scholar 

  • Skoe E, Kraus N (2010) Hearing it again and again: on-line subcortical plasticity in humans. PLoS One 5(10):e13645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skoe E, Kraus N (2010a) Auditory brainstem response to complex sounds: a tutorial. Ear Hear 31(3):302

    Article  PubMed  PubMed Central  Google Scholar 

  • Stropahl M, Chen L-C, Debener S (2017) Cortical reorganization in postlingually deaf cochlear implant users: intra-modal and cross-modal considerations. Hear Res 343:128–137

    Article  PubMed  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. https://doi.org/10.1155/2011/879716

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadel F, Bock E, Niso G, Mosher JC, Cousineau M, Pantazis D, Baillet S (2019) MEG/EEG group analysis with brainstorm. Front Neurosci 13:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Tal I, Large EW, Rabinovitch E, Wei Y, Schroeder CE, Poeppel D, Golumbic EZ (2017) Neural entrainment to the beat: The “missing-pulse” phenomenon. J Neurosci 37(26):6331–6341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamburro G, Croce P, Zappasodi F, Comani S (2021) Is Brain dynamics preserved in the EEG after automated artifact removal? A validation of the fingerprint method and the automatic removal of cardiac interference approach based on microstate analysis. Front Neurosci 14:1404

    Article  Google Scholar 

  • Torres-Fortuny A, Arnaiz-Marquez I, Hernández-Pérez H, Eimil-Suárez E (2018) Auditory steady-state response in cochlear implant patients. Acta Otorrinolaringol (english Edition) 69(5):268–274

    Article  Google Scholar 

  • van den Broeke EN, Mouraux A, Groneberg AH, Pfau DB, Treede R-D, Klein T (2015) Characterizing pinprick-evoked brain potentials before and after experimentally induced secondary hyperalgesia. J Neurophysiol 114(5):2672–2681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Maanen A, Stapells DR (2010) Multiple-ASSR thresholds in infants and young children with hearing loss. J Am Acad Audiol 21(8):535–545

    Article  PubMed  Google Scholar 

  • Van Eeckhoutte M, Luke R, Wouters J, Francart T (2018) Stability of auditory steady state responses over time. Ear Hear 39(2):260–268

    Article  PubMed  Google Scholar 

  • Viola FC, Thorne JD, Bleeck S, Eyles J, Debener S (2011) Uncovering auditory evoked potentials from cochlear implant users with independent component analysis. Psychophysiology 48(11):1470–1480

    Article  PubMed  Google Scholar 

  • Viola FC, De Vos M, Hine J, Sandmann P, Bleeck S, Eyles J, Debener S (2012) Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials. Hear Res 284(1–2):6–15

    Article  PubMed  Google Scholar 

  • Waechter, S. M., Simoes-Franklin, C., Smith, J., Viani, L., & Reilly, R. B. (2019). Cochlear implant artefact reduction in electroencephalography data obtained with the auditory oddball paradigm and stimuli with differing envelopes. In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) (pp. 203–206). IEEE.

  • Wieser MJ, Miskovic V, Keil A (2016) Steady-state visual evoked potentials as a research tool in social affective neuroscience. Psychophysiology 53(12):1763–1775

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler, I., Debener, S., Müller, K.-R., & Tangermann, M. (2015). On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4101–4105). IEEE.

  • Wooi Teoh S, Pisoni DB, Miyamoto RT (2004) Cochlear implantation in adults with prelingual deafness Part i Clinical Results. Laryngoscope 114(9):1536–1540

    Article  Google Scholar 

  • Wu GK, Tao HW, Zhang LI (2011) From elementary synaptic circuits to information processing in primary auditory cortex. Neurosci Biobehav Rev 35(10):2094–2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao D (2001) A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas 22(4):693

    Article  CAS  PubMed  Google Scholar 

  • Zhigalov A, Herring JD, Herpers J, Bergmann TO, Jensen O (2019) Probing cortical excitability using rapid frequency tagging. Neuroimage 195:59–66

    Article  CAS  PubMed  Google Scholar 

  • Zoefel B, ten Oever S, Sack AT (2018) The involvement of endogenous neural oscillations in the processing of rhythmic input: More than a regular repetition of evoked neural responses. Front Neurosci. https://doi.org/10.3389/fnins.2018.00095

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers along with Dr. Patrice Voss for his constructive comments on the first draft of the manuscript and Marie-Anne Prudhomme, Frédérik Desaulniers, and Mihaela Felezeu for their help in recruiting participants and recording data. Thanks to the Raymond-Dewar Institute and the MAB-MacKay Rehabilitation Center that made recruiting CI users for this study possible for us. The authors confirm that this paper has not been presented/published or cited elsewhere.

Funding

This study was supported by an Incubator Award from the Centre for Research on Brain, Language and Music (CRBLM). AL is supported by a FRQS Career Grant. SN is supported by an ERC Starting Grant RHYTHM AND BRAINS (801872).

Author information

Authors and Affiliations

Authors

Contributions

AL obtained the funding and contributed to developing the rationale and design of the study. AL coded the experiment and acquired the data. RA analyzed the data, drafted the manuscript and created the figures. A.L helped with data analysis and AL and SN contributed to editing the manuscript.

Corresponding author

Correspondence to Razieh Alemi.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical Approval

The Research Ethics Board of the Centre for Research in Rehabilitation of Greater Montreal approved this study (CRIR-985-0714). All participants gave written informed consent and received compensation for their participation.

Additional information

Handling Editor: Claude Alain.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alemi, R., Nozaradan, S. & Lehmann, A. Free-Field Cortical Steady-State Evoked Potentials in Cochlear Implant Users. Brain Topogr 34, 664–680 (2021). https://doi.org/10.1007/s10548-021-00860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-021-00860-2

Keywords

Navigation