Skip to main content
Log in

Abnormal Functional Connectivity Density in Post-Stroke Aphasia

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Post-stroke aphasia (PSA), which refers to the loss or impairment of language, is typically caused by left hemisphere lesions. Previous neuroimaging studies have indicated that the pathology of PSA may be related to abnormalities in functional integration. In this study, we used resting-state functional magnetic resonance imaging (rs-fMRI) to examine functional connectivity density (FCD) in PSA. We compared short- and long-range FCD between individuals with PSA (n = 17) and healthy controls (HC, n = 20). We then performed Pearson’s correlation analysis on the FCD values from the affected brain regions and the speech scores in the PSA group. Compared with HCs, individuals with PSA showed increased short-range FCD in the contralesional temporal gyrus, the inferior frontal gyrus, the thalamus, the insula, and the mesial temporal gyrus [hippocampus/parahippocampus (HIP/ParaHIP)]. PSA demonstrated an increased long-range FCD in the contralesional mesial temporal gyrus (HIP/ParaHIP). PSA also displayed decreased short-range FCD in the ipsilesional part of the frontal gyrus, the caudate, the thalamus, the fusiform gyrus, and the mesial temporal gyrus (HIP/ParaHIP), and decreased long-range FCD in the ipsilesional superior temporal gyrus, the fusiform gyrus, and the mesial temporal gyrus (HIP/ParaHIP). The decreased long-range FCD in the left superior temporal gyrus in PSA subjects was positively correlated with the spontaneous speech score. The altered FCD observed due to disrupted functional connectivity after stroke may lead to language production, semantic processing, and cognitive impairments. Our findings expand previous functional studies on stroke and provide new evidence of the intraregional and interregional interactions at the voxel level in the pathophysiology of PSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PSA:

Post-stroke aphasia

fMRI:

Functional magnetic resonance imaging

FCD:

Functional connectivity density

ABC:

Aphasia battery of Chinese

AQ:

Aphasia quotient

PQ:

Performance quotient

CQ:

Cortical quotient

FC:

Functional connectivity

References

  • Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3(2):e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackermann H, Riecker A (2004) The contribution of the insula to motor aspects of speech production: a review and a hypothesis. Brain Lang 89:320–328

    Article  PubMed  Google Scholar 

  • Adamson K, Troiani V (2018) Distinct and overlapping fusiform activation to faces and food. Neuroimage 174:393–406

    Article  PubMed  Google Scholar 

  • Agosta F, Galantucci S, Valsasina P, Canu E, Meani A, Marcone A et al (2014) Disrupted brain connectome in semantic variant of primary progressive aphasia. Neurobiol Aging 35:2646–2655

    Article  PubMed  Google Scholar 

  • Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT et al (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450

    Article  CAS  PubMed  Google Scholar 

  • Boes AD, Prasad S, Liu HS, Liu Q, Pascual-Leone A, Caviness VS et al (2015) Network localization of neurological symptoms from focal brain lesions. Brain 138:3061–3075

    Article  PubMed  PubMed Central  Google Scholar 

  • Botez MI, Wertheim N (1959) Expressive aphasia and amusia following right frontal lesion in a right-handed man. Brain 82:186–202

    Article  CAS  PubMed  Google Scholar 

  • Brownsett SLE, Warren JE, Geranmayeh F, Woodhead Z, Leech RWise RJS (2014) Cognitive control and its impact on recovery from aphasic stroke. Brain 137:242–254

    Article  PubMed  Google Scholar 

  • Brumm KP, Perthen JE, Liu TT, Haist F, Ayalon LLove T (2010) An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors. Neuroimage 51:995–1005

    Article  PubMed  Google Scholar 

  • Buchel C, Price C, Friston K (1998) A multimodal language region in the ventral visual pathway. Nature 394:274–277

    Article  CAS  PubMed  Google Scholar 

  • Bullmore ET, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    Article  CAS  PubMed  Google Scholar 

  • Chan D, Fox NC, Scahill RI, Crum WR, Whitwell JL, Leschziner G et al (2001) Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Ann Neurol 49:433–442

    Article  CAS  PubMed  Google Scholar 

  • Chapados C, Petrides M (2013) Impairment only on the fluency subtest of the frontal assessment battery after prefrontal lesions. Brain 136:2966–2978

    Article  PubMed  Google Scholar 

  • Cohen L, Lehericy S, Chochon F, Lemer C, Rivaud S, Dehaene S (2002) Language-specific tuning of visual cortex functional properties of the visual word form area. Brain 125:1054–1069

    Article  PubMed  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH et al (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22:1326–1333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crosson B, Sadek JR, Maron L, Gokcay D, Mohr CM, Auerbach EJ et al (2001) Relative shift in activity from medial to lateral frontal cortex during internally versus externally guided word generation. J Cogn Neurosci 13:272–283

    Article  CAS  PubMed  Google Scholar 

  • Crosson B, Benefield H, Cato MA, Sadek JR, Moore AB, Wierenga CE et al (2003) Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes. J Int Neuropsychol Soc 9:1061–1077

    Article  PubMed  Google Scholar 

  • Ding J, An D, Liao W, Wu G, Xu Q, Zhou D et al (2014) Abnormal functional connectivity density in psychogenic non-epileptic seizures. Epilepsy Res 108:1184–1194

    Article  PubMed  Google Scholar 

  • Dronkers NFT (2011) The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci 5:1–1

    PubMed  PubMed Central  Google Scholar 

  • Foerster BU, Tomasi D, Caparelli EC (2010) Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magn Reson Med 54:1261–1267

    Article  Google Scholar 

  • Friederici AD (2011) The brain basis of language processing: from structure to function. Physiol Rev 91:1357–1392

    Article  PubMed  Google Scholar 

  • Gao SR, Chu YF, Shi S, Peng Q, Dai Y, Wang SD (1992) A standardization research of the aphasia battery of Chinese. Chin Ment Health J [Chinese] 6:125–128

    Google Scholar 

  • Geranmayeh F, Brownsett SLE, Wise RJS (2014) Task-induced brain activity in aphasic stroke patients: what is driving recovery? Brain 137:2632–2648

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey DY, Wei T, Ellmore TM, Hamilton AC, Schnur TT (2013) Neuropsychological evidence for the functional role of the uncinate fasciculus in semantic control. Neuropsychologia 51:789–801

    Article  PubMed  Google Scholar 

  • Henson R (2002) Introduction to functional magnetic resonance imaging: principles and techniques. Acta Radiol 43:2110–2110

    Google Scholar 

  • Hickok G, Poeppel D (2004a) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67–99

    Article  PubMed  Google Scholar 

  • Hickok G, Poeppel D (2004b) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67

    Article  PubMed  Google Scholar 

  • Hillis AE (2007) Magnetic resonance perfusion imaging in the study of language. Brain Lang 102:165–175

    Article  PubMed  Google Scholar 

  • Jonas S (1982) The thalamus and aphasia, including transcortical aphasia: a review. J Commun Disord 15:31–41

    Article  CAS  PubMed  Google Scholar 

  • Joseph B (2012) The neuroscience of autism spectrum disorders. Academic Press, Cambridge

    Google Scholar 

  • Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF, Parisi JE et al (2006) Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129:1385–1398

    Article  PubMed  Google Scholar 

  • Kauhanen ML, Korpelainen JT, Hiltunen P, Maatta R, Mononen H, Brusin E et al (2000) Aphasia, depression, and non-verbal cognitive impairment in ischaemic stroke. Cerebrovasc Dis 10:455–461

    Article  CAS  PubMed  Google Scholar 

  • Kelly C, Uddin LQ, Shehzad Z, Margulies DS, Castellanos FX, Milham MP et al (2010) Broca’s region: linking human brain functional connectivity data and nonhuman primate tracing anatomy studies. Eur J Neurosci 32:383

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiran S (2012) What is the nature of poststroke language recovery and reorganization? ISRN Neurol. https://doi.org/10.5402/2012/786872

    Article  PubMed  PubMed Central  Google Scholar 

  • Klingbeil J, Wawrzyniak M, Stockert A, Saur D (2017) Resting-state functional connectivity: an emerging method for the study of language networks in post-stroke aphasia. Brain Cogn. https://doi.org/10.1016/j.bandc.2017.08.005

    Article  PubMed  Google Scholar 

  • Liegeois F, Connelly A, Cross JH, Boyd SG, Gadian DG, Vargha-Khadem F et al (2004) Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain 127:1229–1236

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Luo X-G, Dy C-L, Ren Y, Feng Y, Yu H-M et al (2015) Characteristics of language impairment in Parkinson’s disease and its influencing factors. Transl Neurodegener 4:2–2

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu J, Wu J, Yao C, Zhuang D, Qiu T, Hu X et al (2013) Awake language mapping and 3-Tesla intraoperative MRI-guided volumetric resection for gliomas in language areas. J Clin Neurosci 20:1280–1287

    Article  PubMed  Google Scholar 

  • Maguire EA, Mullally SL (2013) The hippocampus: a manifesto for change. J Exp Psychol Gen 142:1180–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Maguire EA, Intraub H, Mullally SL (2016) Scenes, spaces, and memory traces: what does the hippocampus do? The neuroscientist: a review journal bringing neurobiology. Neurol Psychiatry 22:432–439

    Google Scholar 

  • McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci 7:293–299

    Article  PubMed  Google Scholar 

  • Menke R, Meinzer M, Kugel H, Deppe M, Baumgaertner A, Schiffbauer H et al (2009) Imaging short- and long-term training success in chronic aphasia. BMC Neurosci 10:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052

    Article  PubMed  Google Scholar 

  • Mesulam M (2013) Primary progressive aphasia: a dementia of the language network. Dement Neuropsychol 7:2–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Helm-Estabrooks N et al (2005) Improved naming after TMS treatments in a chronic, global aphasia patient—case report. Neurocase 11:182–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Nair VA, Young BM, La C, Reiter P, Nadkarni TN, Song J et al (2015) Functional connectivity changes in the language network during stroke recovery. Ann Clin Transl Neurol 2:185–195

    Article  PubMed  PubMed Central  Google Scholar 

  • New AB, Robin DA, Parkinson AL, Duffy JR, McNeil MR, Piguet O et al (2015) Altered resting-state network connectivity in stroke patients with and without apraxia of speech. Neuroimage-Clin 8:429–439

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Ann Rev Neurosci 28:377–401

    Article  CAS  PubMed  Google Scholar 

  • Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8:976–987

    Article  CAS  PubMed  Google Scholar 

  • Pedersen PM, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol 38:659–666

    Article  CAS  PubMed  Google Scholar 

  • Pedersen PM, Vinter K, Olsen TS (2004) Aphasia after stroke: type, severity and prognosis. The Copenhagen aphasia study. Cerebrovasc Dis 17:35–43

    Article  PubMed  Google Scholar 

  • Peelle JE, Troiani V, Gee J, Moore P, McMillan C, Vesely L et al (2008) Sentence comprehension and voxel-based morphometry in progressive nonfluent aphasia, semantic dementia, and nonaphasic frontotemporal dementia. J Neurolinguist 21:418–432

    Article  Google Scholar 

  • Pillay SB, Binder JR, Humphries C, Gross WL, Book DS (2017) Lesion localization of speech comprehension deficits in chronic aphasia. Neurology 88:970–975

    Article  PubMed  PubMed Central  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154

    Article  PubMed  Google Scholar 

  • Robson H, Zahn R, Keidel JL, Binney RJ, Sage K, Ralph MAL (2014) The anterior temporal lobes support residual comprehension in Wernicke’s aphasia. Brain 137:931–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogalsky C, Hickok G (2011) The role of Broca’s area in sentence comprehension. J Cogn Neurosci 23:1664–1680

    Article  PubMed  Google Scholar 

  • Saeki S, Ogata H, Okubo T, Takahashi K, Hoshuyama T (1995) Return to work after stroke. A follow-up study. Stroke 26:399–401

    Article  CAS  PubMed  Google Scholar 

  • Sandberg CW (2017) Hypoconnectivity of resting-state networks in persons with aphasia compared with healthy age-matched adults. Front Hum Neurosci 11:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M et al (2006) Dynamics of language reorganization after stroke. Brain 129:1371–1384

    Article  PubMed  Google Scholar 

  • Sepulcre J, Liu HS, Talukdar T, Martincorena I, Yeo BTT, Buckner RL (2010) The organization of local and distant functional connectivity in the human brain. PLoS Comput Biol 6:e1000808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp DJ, Scott SK, Wise RJS (2004a) Retrieving meaning after temporal lobe infarction. J Neurol Neurosurg Psychiatry 75:798–798

    Google Scholar 

  • Sharp DJ, Scott SK, Wise RJS (2004b) Retrieving meaning after temporal lobe infarction: the role of the basal language area. Ann Neurol 56:836–846

    Article  PubMed  Google Scholar 

  • Siegel JS, Ramsey LE, Snyder AZ, Metcalf NV, Chacko RV, Weinberger K et al (2016) Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci USA 113:E4367–E4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snijders TM, Vosse T, Kempen G, Van Berkum JJA, Petersson KM, Hagoort P (2009) Retrieval and unification of syntactic structure in sentence comprehension: an fMRI study using word-category ambiguity. Cereb Cortex 19:1493–1503

    Article  PubMed  Google Scholar 

  • Stockert A, Kümmerer D, Saur D (2016) Insights into early language recovery: from basic principles to practical applications. Aphasiology 30:1–25

    Article  Google Scholar 

  • Tan RH, Wong S, Kril JJ, Piguet O, Hornberger M, Hodges JR et al (2014) Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia. Brain 137:2065–2076

    Article  PubMed  Google Scholar 

  • Tetzloff KA, Duffy JR, Clark HM, Strand EA, Machulda MM, Schwarz CG et al (2018) Longitudinal structural and molecular neuroimaging in agrammatic primary progressive aphasia. Brain 141:302–317

    Article  PubMed  Google Scholar 

  • Tippett DC (2015) Update in aphasia research. Curr Neurol Neurosci 15:49

    Article  Google Scholar 

  • Tomasi D, Volkow ND (2010) Functional connectivity density mapping. Proc Natl Acad Sci USA 107:9885–9890

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasi D, Volkow ND (2011a) Association between functional connectivity hubs and brain networks. Cereb Cortex 21:2003–2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasi D, Volkow ND (2011b) Functional connectivity hubs in the human brain. Neuroimage 57:908–917

    Article  PubMed  Google Scholar 

  • Tomasi D, Volkow ND (2012a) Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 71:443–450

    Article  PubMed  Google Scholar 

  • Tomasi D, Volkow ND (2012b) Aging and functional brain networks. Mol Psychiatry 17:471, 549 – 458

    Article  CAS  PubMed  Google Scholar 

  • Tomasi D, Volkow ND (2012c) Resting functional connectivity of language networks: characterization and reproducibility. Mol Psychiatry 17:841–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treger I, Luzki L, Gil M, Ring H (2008) Transcranial Doppler monitoring during language tasks in stroke patients with aphasia (response to letter to the editor). Disabil Rehabilit 30:565

    Article  Google Scholar 

  • Vigneau M, Beaucousin V, Herve PY, Duffau H, Crivello F, Houde O et al (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30:1414–1432

    Article  CAS  PubMed  Google Scholar 

  • Visser M, Lambon Ralph MAL (2011) Differential contributions of bilateral ventral anterior temporal lobe and left anterior superior temporal gyrus to semantic processes. J Cogn Neurosci 23:3121–3131

    Article  CAS  PubMed  Google Scholar 

  • Wade DT, Hewer RL, David RM, Enderby PM (1986) Aphasia after stroke: natural history and associated deficits. J Neurol Neurosurg Psychiatry 49:11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagenaar E, Snow C, Prins R (1975) Spontaneous speech of aphasic patients: a psycholinguistic analysis. Brain Lang 2:281–303

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang M, Wang W, Liu H, Tao J, Yang C et al (2014) Resting state brain default network in patients with motor aphasia resulting from cerebral infarction. Chin Sci Bull 59:4069–4076

    Article  Google Scholar 

  • Whitwell JL, Jack JC Jr, Parisi JE, Gunter JL, Weigand SD, Boeve BF et al (2013) Midbrain atrophy is not a biomarker of progressive supranuclear palsy pathology. Eur J Neurol 20:1417–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winhuisen L, Thiel A, Schumacher B, Kessler J, Rudolf J, Haupt WF et al (2005) Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia—a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 36:1759–1763

    Article  PubMed  Google Scholar 

  • Yan C, Zang Y (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    Google Scholar 

  • Yang M, Li J, Li YB, Li R, Pang YJ, Yao DZ et al (2016) Altered intrinsic regional activity and interregional functional connectivity in post-stroke aphasia. Sci Rep-UK 6:24803

    Article  CAS  Google Scholar 

  • Yang M, Li J, Li ZQ, Yao DZ, Liao W, Chen HF (2017) Whole-brain functional connectome-based multivariate classification of post-stroke aphasia. Neurocomputing 269:199–205

    Article  Google Scholar 

  • Yang M, Yang P, Fan YS, Li J, Yao DZ, Liao W et al (2018) Altered structure and intrinsic functional connectivity in post-stroke aphasia. Brain Topogr 31:300–310

    Article  PubMed  Google Scholar 

  • Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    Article  PubMed  Google Scholar 

  • Zhang Y, Xie B, Chen H, Li M, Liu F, Chen H (2016) Abnormal functional connectivity density in post-traumatic stress disorder. Brain Topogr 29:405–411

    Article  PubMed  Google Scholar 

  • Zhu D, Chang J, Freeman S, Tan Z, Xiao J, Gao Y et al (2014) Changes of functional connectivity in the left frontoparietal network following aphasic stroke. Front Behav Neurosci 8:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou K, Gao Q, Long Z, Xu F, Sun X, Chen H et al (2016) Abnormal functional connectivity density in first-episode, drug-naive adult patients with major depressive disorder. J Affect Disord 194:153–158

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the radiologist Ying Liu (Y.L.) from the Hospital of Fuzhou for manually tracing the outline of the lesion. This work was supported by Natural Science Foundation of China (Grant Nos. 61806042 and 81471653), Fundamental Research Funds for the Central University (Grant No. ZYGX2013Z004), Sichuan provincial health and family planning commission research project (Grant No. 16PJ051), and the project of the Science and Technology Department in Sichuan province (Grant No. 2017JY0094).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mi Yang or Huafu Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Glenn Wylie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 197 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Yang, M., Biswal, B.B. et al. Abnormal Functional Connectivity Density in Post-Stroke Aphasia. Brain Topogr 32, 271–282 (2019). https://doi.org/10.1007/s10548-018-0681-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-018-0681-4

Keywords

Navigation