Skip to main content

Advertisement

Log in

A Short-Term Scan–Rescan Reliability Test Measuring Brain Tissue and Subcortical Hyperintensity Volumetrics Obtained Using the Lesion Explorer Structural MRI Processing Pipeline

  • Brief Communication
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Lesion Explorer (LE) is a reliable and comprehensive MRI-derived tissue segmentation and brain region parcellation processing pipeline for obtaining intracranial tissue and subcortical hyperintensity (SH) volumetrics. The processing pipeline segments: gray (GM) and white matter (WM); sulcal (sCSF) and ventricular cerebrospinal fluid (vCSF); periventricular (pvSH) and deep white subcortical hyperintensities (dwSH); and cystic fluid filled lacunar-like infarcts (Lacunar); into 26 regions of interest. A short-term scan–rescan reliability test was performed on 20 healthy volunteers: 10 older (mean = 77.7 years, SD = 11.1) and 10 younger (mean = 29.4 years, SD = 7.1). Each participant was scanned twice with an average interscan interval of 15.4 days (range: 29 min–50 days). Results suggest low technique-related error as indicated by excellent intraclass correlation coefficient (ICC) results, with ICCs above 0.90 (p < 0.05) for GM, WM, and CSF, in all 26 regions of interest (13 per hemisphere). Ventricular and lesion sub-type (pvSH, dwSH, and Lacunar) volumes also showed high scan–rescan reliability (dwSH = 0.9998, pvSH = 0.9998, Lacunar = 0.9859, p < 0.01). As indicated by the results of this short-term scan–rescan study, the LE structural MRI processing pipeline can be applied for longitudinal volumetric analyses with confidence

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bastos Leite AJ, van Straaten EC, Scheltens P, Lycklama G, Barkhof F (2004) Thalamic lesions in vascular dementia: low sensitivity of fluid-attenuated inversion recovery (FLAIR) imaging. Stroke 35:415–419

    Article  PubMed  Google Scholar 

  • Dade LA, Gao FQ, Kovacevic N, Roy P, Rockel C, O’Toole CM et al (2004) Semiautomatic brain region extraction: a method of parcellating brain regions from structural magnetic resonance images. Neuroimage 22:1492–1502

    Article  PubMed  CAS  Google Scholar 

  • De Groot JC, De Leeuw FE, Oudkerk M, Hofman A, Jolles J, Breteler MM (2001) Cerebral white matter lesions and subjective cognitive dysfunction: the Rotterdam scan study. Neurology 56:1539–1545

    Article  PubMed  Google Scholar 

  • Decarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ (2005) Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke 36:50–55

    Article  PubMed  Google Scholar 

  • Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE et al (2006) National Institute of Neurological Disorders and Stroke-Canadian stroke network vascular cognitive impairment harmonization standards. Stroke 37:2220–2241

    Article  PubMed  Google Scholar 

  • Koga H, Takashima Y, Murakawa R, Uchino A, Yuzuriha T, Yao H (2009) Cognitive consequences of multiple lacunes and leukoaraiosis as vascular cognitive impairment in community-dwelling elderly individuals. J Stroke Cerebrovasc Dis 18:32–37

    Article  PubMed  Google Scholar 

  • Kovacevic N, Lobaugh NJ, Bronskill MJ, Levine B, Feinstein A, Black SE (2002) A robust method for extraction and automatic segmentation of brain images. Neuroimage 17:1087–1100

    Article  PubMed  CAS  Google Scholar 

  • Levy-Cooperman N, Ramirez J, Lobaugh NJ, Black SE (2008) Misclassified tissue volumes in Alzheimer disease patients with white matter hyperintensities: importance of lesion segmentation procedures for volumetric analysis. Stroke 39:1134–1141

    Article  PubMed  Google Scholar 

  • Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA et al (1996) Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3,301 elderly people. The cardiovascular health study. Stroke 27:1274–1282

    Article  PubMed  Google Scholar 

  • Mungas D, Harvey D, Reed BR, Jagust WJ, Decarli C, Beckett L et al (2005) Longitudinal volumetric MRI change and rate of cognitive decline. Neurology 65:565–571

    Article  PubMed  CAS  Google Scholar 

  • Ramirez J, Gibson E, Quddus A, Lobaugh NJ, Feinstein A, Levine B et al (2011) Lesion explorer: a comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue. Neuroimage 54:963–973

    Article  PubMed  CAS  Google Scholar 

  • Sachdev P, Wen W (2005) Should we distinguish between periventricular and deep white matter hyperintensities? Stroke 36:2342–2343

    Article  PubMed  Google Scholar 

  • Sachdev P, Wen W, Chen X, Brodaty H (2007) Progression of white matter hyperintensities in elderly individuals over 3 years. Neurology 68:214–222

    Article  PubMed  Google Scholar 

  • Shrout PE, Fleiss JL (2008) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  Google Scholar 

  • Srikanth V, Beare R, Blizzard L, Phan T, Stapleton J, Chen J et al (2009) Cerebral white matter lesions, gait, and the risk of incident falls: a prospective population-based study. Stroke 40:175–180

    Article  PubMed  Google Scholar 

  • van den Heuvel DM, Admiraal-Behloul F, Ten DV, Olofsen H, Bollen EL, Murray HM et al (2004) Different progression rates for deep white matter hyperintensities in elderly men and women. Neurology 63:1699–1701

    Article  PubMed  Google Scholar 

  • van den Heuvel DM, Ten DV, de Craen AJ, Admiraal-Behloul F, Olofsen H, Bollen EL et al (2006) Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. J Neurol Neurosurg Psychiatry 77:149–153

    Article  PubMed  Google Scholar 

  • Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler MM (2003) Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam scan study. Stroke 34:1126–1129

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Grant support: Canadian Institutes of Health Research (MT#13129), Alzheimer Society of Canada and Alzheimer Association (US), Heart and Stroke Foundation Centre for Stroke Recovery, and LC Campbell Foundation. Individual salary support: Alzheimer Society of Canada, Sunnybrook Research Institute, Department of Medicine at Sunnybrook and University of Toronto, Brill Chair in Neurology, and Heart and Stroke Foundation Centre for Stroke Recovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Ramirez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, J., Scott, C.J.M. & Black, S.E. A Short-Term Scan–Rescan Reliability Test Measuring Brain Tissue and Subcortical Hyperintensity Volumetrics Obtained Using the Lesion Explorer Structural MRI Processing Pipeline. Brain Topogr 26, 35–38 (2013). https://doi.org/10.1007/s10548-012-0228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0228-z

Keywords

Navigation