Skip to main content

Advertisement

Log in

Clustering of Early Cortical Responses to Median Nerve Stimulation from Average and Single Trial MEG and EEG Signals

  • Original Article
  • Published:
Brain Topography Aims and scope Submit manuscript

Summary:

Median nerve electrical stimulation (MNES) produces early and strong averaged magnetoencephalography (MEG) or electroencephalography (EEG) signals, despite considerable single trial (ST) variability, demonstrated in separate MEG and EEG studies. Here, simultaneous MEG/EEG recordings are used to assess whether same or different aspects of ST variability are influencing EEG and MEG. Clustering techniques provided groupings for the ST timeseries for cortical responses to MNES derived from one modality. These groupings were applied to the corresponding ST timeseries derived from the other modality to quantify the similarity in variability captured by MEG and EEG signals. Estimates of early cortical activity elicited by MNES derived from MEG and EEG signals were very similar, provided ongoing mu rhythm was removed. Similarity between EEG and MEG estimates included both results based on average signals and measures of ST variability. Either MEG or EEG can provide a robust measure of the early cortical activity elicited by MNES as well as of its variability. Reliable indices of early cortical responses to MNES can be derived from either MEG or EEG data. These indices can be based on average signals, as is routinely done with clinical EEG, but it could also rely on hitherto little utilized measures of ST variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, T., McCarthy, G., Wood, C.C., Darcey, T.M., Spencer, D.D. and Williamson, P.D. Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J. Neurophysiol., 1989, 62: 694–710.

    PubMed  Google Scholar 

  • Arezzo, J.C., Vaughan, H.G. and Legatt, A.D. Topography and intra-cranical sources of somatosensory evoked-potentials in the monkey .2. Cortical Components. EEG Clin. Neurophysiol., 1981, 51: 1–18.

    Article  Google Scholar 

  • Balzamo, E., Marquis, P., Chauvel, P. and Regis, J. Short-latency components of evoked potentials to median nerve stimulation recorded by intracerebral electrodes in the human pre- and postcentral areas. Clin. Neurophysiol., 2004, 115: 1616–1623.

    Article  PubMed  Google Scholar 

  • Barba, C., Valeriani, M., Colicchio, G., Tonali, P. and Restuccia, D. Parietal generators of low- and high-frequency MN (median nerve) SEPs: data from intracortical human recordings. Clin. Neurophysiol., 2004, 115: 647–657.

    Article  PubMed  Google Scholar 

  • Baumgartner, C., Sutherling, W.W., Sho, D. and Barth, D.S. Spatiotemporal modeling of cerebral evoked magnetic fields to median nerve stimulation. Electroencephalogr. Clin. Neurophysiol., 1991, 79: 27–35.

    Article  PubMed  Google Scholar 

  • Bell, J. and Sejnowski, T.J. An information maximization approach to blind separation and blind deconvolution. Neural Comput., 1995, 7: 1004–1034.

    Google Scholar 

  • Bezdek, J.C. A convergence theorem for the fuzzy ISODATA clustering algorithm. IEEE Trans. Pattern Anal. Machine Intell., 1980, PAMI-2 1: 1–8.

    Google Scholar 

  • Brandt, M.E. Visual and auditory evoked phase resetting of the alpha EEG. Int. J. Psychophysiol. 1997, 26: 285–298.

    Article  PubMed  Google Scholar 

  • Buchner, H., Fuchs, M., Wischmann, H.A., Dossel, O., Ludwig, I., Knepper, A. and Berg, P. Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording of electric and magnetic fields combined with 3D-MR tomography. Brain Topogr., 1994, 6: 299–310.

    Article  PubMed  Google Scholar 

  • Chen, Z.Y., Wong, H.K. and Chan, Y.H. Variability of somatosensory evoked potential monitoring during scoliosis surgery. J. Spinal Disord. Tech., 2004, 17(6): 470–476.

    Article  PubMed  Google Scholar 

  • Cheyne, D., Gaetz, W., Garnero, L., Lachaux, J.P., Ducorps, A., Schwartz, D. and Varela, F.J. Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Brain Res. Cogn. Brain Res., 2003, 17: 599–611.

    Article  PubMed  Google Scholar 

  • Ferree, T.C., Eriksen, K.J. and Tucker, D.M. Regional head tissue conductivity estimation for improved EEG analysis. IEEE Trans. Biomed. Eng., 2000, 47: 1584–1592.

    Article  PubMed  Google Scholar 

  • Gaetz, W.C. and Cheyne, D.O. Localization of human somatosensory cortex using spatially filtered magnetoencephalography. Neurosci. Lett., 2003, 340: 161–164.

    Article  PubMed  Google Scholar 

  • Golub, G.H. and Charles, V.L. Matrix Computations. Baltimore, Johns Hopkins University Press, 1996.

    Google Scholar 

  • Goncalves, S., de Munck, J.C., Verbunt, J.P., Heethaar, R.M. and da Silva, F.H. In vivo measurement of the brain and skull resistivities using an EIT-based method and the combined analysis of SEF/SEP data. IEEE Trans. Biomed. Eng., 2003, 50: 1124–1128.

    Article  PubMed  Google Scholar 

  • Gross, J. and Ioannides, A.A. Linear transformations of data space in MEG. Phys. Med. Biol., 1999, 44: 2081–2097.

    Article  PubMed  Google Scholar 

  • Haig, A.R., Gordon, E., Rogers, G. and Anderson, J. Classification of single-trial ERP sub-types: application of globally optimal vector quantization using simulated annealing. Electroencephalogr. Clin. Neurophysiol., 1995, 94: 288–297.

    Article  PubMed  Google Scholar 

  • Hari, R., Reinikainen, K., Kaukoranta, E., Hamalainen, M., Ilmoniemi, R.J., Penttinen, A., Salminen, J. and Teszner, D. Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroenceph. Clin. Neurophysiol., 1984, 57: 254–263.

    Article  PubMed  Google Scholar 

  • Hari, R. and Forss, N. Magnetoencephalography in the study of human somatosensory cortical processing. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 1999, 354: 1145–1154.

    Article  PubMed  Google Scholar 

  • Ioannides, A.A., Bolton, J.P.R. and Clarke, C.J.S. Continuous probabilistic solutions to the biomagnetic inverse problem. Inverse Probl., 1990, 6: 523–542.

    Article  Google Scholar 

  • Ioannides, A.A. Real time human brain function: observations and inferences from single trial analysis of magnetoencephalographic signals. Clin. Electroencephalogr., 2001, 32: 98–111.

    PubMed  Google Scholar 

  • Ioannides, A.A., Kostopoulos, G.K., Laskaris, N.A., Liu, L., Shibata, T., Schellens, M., Poghosyan, V. and Khurshudyan, A. Timing and connectivity in the human somatosensory cortex from single trial mass electrical activity. Hum. Brain Mapp., 2002, 15: 231–246.

    Article  PubMed  Google Scholar 

  • Ioannides, A.A., Poghosyan, V. Dammers, J. and Streit, M. Real-time activity and connectivity in healthy individuals and schizophrenic patients. NeuroImage, 2004, 23: 473–482.

    Article  PubMed  Google Scholar 

  • Jansen, B.H., Agarwal, G., Hegde, A. and Boutros, N.N. Phase synchronization of the ongoing EEG and auditory EP generation. Clin. Neurophysiol., 2003, 114: 79–85.

    Article  PubMed  Google Scholar 

  • Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V. and Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 2000, 37: 163–178.

    Article  PubMed  Google Scholar 

  • Jung, T.P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E. and Sejnowski, T.J. Analysis and visualization of single-trial event-related potentials. Hum. Brain Mapp., 2001, 14: 166–185.

    Article  PubMed  Google Scholar 

  • Kakigi, R. Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci. Res., 1994, 20: 165–174.

    Article  PubMed  Google Scholar 

  • Komssi, S., Huttunen, J., Aronen, H.J. and Ilmoniemi, R.J. EEG minimum-norm estimation compared with MEG dipole fitting in the localization of somatosensory sources at S1. Clin. Neurophysiol., 2004, 115: 534–542.

    Article  PubMed  Google Scholar 

  • Krings, T., Chiappa, K.H., Cuffin, B.N., Cochius, J.I., Connolly, S. and Cosgrove, G.R. Accuracy of EEG dipole source localization using implanted sources in the human brain. Clin. Neurophysiol., 1999, 110: 106–114.

    Article  PubMed  Google Scholar 

  • Laskaris, N.A. and Ioannides, A.A. Exploratory data analysis of evoked response single trials based on minimal spanning tree. Clin. Neurophysiol., 2001, 112: 698–712.

    Article  PubMed  Google Scholar 

  • Laskaris, N.A., Liu, L.C. and Ioannides, A.A. Single-trial variability in early visual neuromagnetic responses: an explorative study based on the regional activation contributing to the N70m peak. Neuroimage, 2003, 20: 765–783.

    Article  PubMed  Google Scholar 

  • Lehmann, D. Principles of spatial analysis. In: A.S. Gevins, A. Remond (Eds.), Handbook of Electroencephalography and Clinical Neurophysiology, revised series, Vol. 1. Methods of Analysis of Brain Electrical and Magnetic Signals. Amsterdam: Elsevier, 1987: 309–354.

    Google Scholar 

  • Liu, A.K., Dale, A.M. and Belliveau, J.W. Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum. Brain Mapp., 2002, 16: 47–62.

    Article  PubMed  Google Scholar 

  • Liu, E.H., Wong, H.K., Chia, C.P., Lim, H.J., Chen, Z.Y. and Lee, T.L. Effects of isoflurane and propofol on cortical somatosensory evoked potentials during comparable depth of anaesthesia as guided by bispectral index. Br. J. Anaesth., 2005, 94(2): 193–197.

    Article  PubMed  Google Scholar 

  • Liu, L. and Ioannides, A.A. A correlation study of averaged and single trial MEG signals: the average describes multiple histories each in a different set of single trials. Brain Topogr., 1996, 8: 385–396.

    Article  PubMed  Google Scholar 

  • Luders, H., Dinner, D.S., Lesser, R.P. and Morris, H.H. Evoked potentials in cortical localization. J. Clin. Neurophysiol., 1986, 3: 75–84.

    PubMed  Google Scholar 

  • Lutz, A., Lachaux, J.P., Martinerie, J. and Varela, F.J. Guiding the study of brain dynamics by using first-person data: synchrony patterns correlate with ongoing conscious states during a simple visual task. Proc. Natl. Acad. Sci. USA, 2002, 99: 1586–1591.

    Article  PubMed  Google Scholar 

  • Makeig, S., Westerfield, M., Jung, T.P., Enghoff, S., Townsend, J., Courchesne, E. and Sejnowski, T.J. Dynamic brain sources of visual evoked responses. Science, 2002, 295: 690–694.

    Google Scholar 

  • Mast, J. and Victor, J.D. Fluctuations of steady-state VEPs: interaction of driven evoked potentials and the EEG. Electroencephalogr. Clin. Neurophysiol., 1991, 78: 389–401.

    Article  PubMed  Google Scholar 

  • Mauguiere, F., Merlet, I., Forss, N., Vanni, S., Jousmaki, V., Adeleine, P. and Hari, R. Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: Location and activation timing of SEF sources. Electroencephalogr. Clin. Neurophysiol., 1997, 104: 281–289.

    Article  PubMed  Google Scholar 

  • Mauguiere, F. and Desmedt, J.E. Focal capsular vascular lesions can selectively deafferent the prerolandic or the parietal cortex: somatosensory evoked potentials evidence. Ann. Neurol., 1991, 30: 71–75.

    Article  PubMed  Google Scholar 

  • Mazzini, L. Clinical applications of event-related potentials in brain injury. Phys. Med. Rehabil. Clin. N. Am., 2004, 15(1): 163–175.

    PubMed  Google Scholar 

  • Moradi, F., Liu, L.C., Cheng, K., Waggoner, R.A., Tanaka, K. and Ioannides, A.A. Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI. Neuroimage, 2003, 18: 595–609.

    Article  PubMed  Google Scholar 

  • Mosher, J.C., Leahy, R.M. and Lewis, P.S. EEG and MEG: forward solutions for inverse methods. IEEE Trans. Biomed. Eng., 1999, 46: 245–259.

    Article  PubMed  Google Scholar 

  • Nikouline, V.V., Wikstrom, H., Linkenkaer-Hansen, K., Kesaniemi, M., Ilmoniemi, R.J. and Huttunen, J. Somatosensory evoked magnetic fields: relation to pre-stimulus mu rhythm. Clin. Neurophysiol., 2000, 111: 1227–1233.

    Article  PubMed  Google Scholar 

  • Pal, N.R. and Bezdek, J.C. On cluster validity for the Fuzzy c-Means model. IEEE Trans. Fuzzy Syst., 1995, 3: 370–379.

    Article  Google Scholar 

  • Papakostopoulos, D. and Crow, H.J. Direct recording of the somatosensory evoked potentials from the cerebral cortex of man and the difference between precentral and postcentral potentials. In: J.E. Desmedt (Ed.), Clinical Uses of Cerebral Brainstem and Spinal Somatosensory Evoked Potentials, Prog. Clin. Neurophysiology, Vol. 7. Basel: Karger, 1980: 15–26.

    Google Scholar 

  • Peterson, N.N., Schroeder, C.E. and Arezzo, J.C. Neural generators of early cortical somatosensory evoked potentials in the awake monkey. Electroencephalogr. Clin. Neurophysiol., 1995, 96: 248–260.

    Article  PubMed  Google Scholar 

  • Pizzella, V., Tecchio, F., Romani, G.L. and Rossini, P.M. Functional localization of the sensory hand area with respect to the motor central gyrus knob. Neuroreport, 1999, 10: 3809–3814.

    PubMed  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, 1992.

    Google Scholar 

  • Ramze Rezaee, M., Lelieveldt, B.P.F. and Reiber, J.H.C. A new cluster validity index for the fuzzy c-mean. Pattern Recognition Lett., 1998, 19: 237–246.

    Article  Google Scholar 

  • Rodionov, V., Goodman, C., Fisher, L., Rosenstein, G.Z. and Sohmer, H. A new technique for the analysis of background and evoked EEG activity: time and amplitude distributions of the EEG deflections. Clin. Neurophysiol., 2002, 113: 1412–1422.

    Article  PubMed  Google Scholar 

  • Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., 1987, 20: 53–65.

    Article  Google Scholar 

  • Salenius, S., Schnitzler, A., Salmelin, R., Jousmaki, V. and Hari, R. Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage, 1997, 5: 221–228.

    Article  PubMed  Google Scholar 

  • Seitz, R.J., Butefisch, C.M., Kleiser, R. and Homberg, V. Reorganisation of cerebral circuits in human ischemic brain disease. Restor Neurol. Neurosci., 2004, 22(3–5): 207–229.

    PubMed  Google Scholar 

  • Tang, A.C., Pearlmutter, B.A., Malaszenko, N.A. and Phung, D.B. Independent components of magnetoencephalography: single-trial response onset times. Neuroimage, 2002, 17: 1773–1789.

    Article  PubMed  Google Scholar 

  • Tiihonen, J., Hari, R. and Hämäläinen, M. Early deflections of cerebral magnetic responses to median nerve stimulation. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials, 1989, 74: 290–296.

    Article  Google Scholar 

  • Tripp, J.H. Physical concepts and mathematical models. In: S.J. Williamson, G.L. Romani, L. Kaufman and I. Modena (Eds.), Biomagnetism: An Interdisciplinary Approach. New York: Plenum, 1983: 101–139.

    Google Scholar 

  • Van Veen, B.D., Van Dronglen, W., Yuchtman, M. and Suzuki, A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng., 1997, 44: 867–880.

    Article  PubMed  Google Scholar 

  • Vanni, S., Rockstroh, B. and Hari, R. Cortical sources of human short-latency somatosensory evoked fields to median and ulnar nerve stimuli. Brain Res., 1996, 737: 25–33.

    Article  PubMed  Google Scholar 

  • Vigario, R., Sarela, J., Jousmaki V., Hamalainen, M. and Oja, E. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng., 2000, 47: 589–593.

    Article  PubMed  Google Scholar 

  • Wood, C.C., Cohen, D., Cuffin, B.N., Yarita, M. and Allison, T. Electrical sources in human somatosensory cortex: Identification by combined magnetic and potential recordings. Science, 1985, 227: 1051–1053.

    CAS  PubMed  Google Scholar 

  • Xie, L.X. and Beni, G. Validity measure for fuzzy clustering. IEEE Trans. Pat. Ana. Mach. Intell., 1991, 3: 841–847.

    Article  Google Scholar 

  • Zouridakis, G., Jansen, B.H. and Boutros, N.N. A fuzzy clustering approach to EP estimation. IEEE Trans. Biomed. Eng., 1997, 44: 673–680.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George K. Kostopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zainea, O., Kostopoulos, G. & Ioannides, A. Clustering of Early Cortical Responses to Median Nerve Stimulation from Average and Single Trial MEG and EEG Signals. Brain Topogr 17, 219–236 (2005). https://doi.org/10.1007/s10548-005-6031-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-005-6031-3

Key words:

Navigation