Skip to main content
Log in

Predictability of the Meteorological Conditions Favourable to Radiative Fog Formation During the 2011 ParisFog Campaign

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Radiative fog formation is a complex phenomenon involving local physical and microphysical processes that take place when particular meteorological conditions occur. This study aims at quantifying the ability of a regional numerical weather model to analyze and forecast the conditions favourable to radiative fog formation at an instrumental site in the Paris area. Data from the ParisFog campaign have been used in order to quantify the meteorological conditions favorable to radiative fog formation (pre-fog conditions) by setting threshold values on the key meteorological variables driving this process: 2-m temperature tendency, 10-m wind speed, 2-m relative humidity and net infrared flux. Data from the ParisFog observation periods of November 2011 indicate that use of these thresholds leads to the detection of 87 % of cases in which radiative fog formation was observed. In order to evaluate the ability of a regional weather model to reproduce adequately these conditions, the same thresholds are applied to meteorological model fields in both analysis and forecast mode. It is shown that, with this simple methodology, the model detects 74 % of the meteorological conditions finally leading to observed radiative fog, and 48 % 2 days in advance. Finally, sensitivity tests are conducted in order to evaluate the impact of using larger time or space windows on the forecasting skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bartok J, Bott A, Gera M (2012) Fog prediction for road traffic safety in a coastal desert region. Boundary-Layer Meteorol 145:485–506

    Article  Google Scholar 

  • Bergot T, Guedalia D (1994) Numerical forecasting of radiation fog. Part I: numerical model and sensitivity tests. Mon Weather Rev 122:1218–1230

    Article  Google Scholar 

  • Bott A (1991) On the influence of the physico-chemical properties of aerosols on the life cycle of radiation fogs. Boundary-Layer Meteorol 56:1–31

    Article  Google Scholar 

  • Bott A, Sievers U, Zdunkowski W (1990) A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. J Atmos Sci 47:2153–2166

    Article  Google Scholar 

  • Bott A, Trautmann T (2002) Pafog A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos Res 64:191–203

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585

    Article  Google Scholar 

  • Cheruy F, Campoy A, Dupont J-C, Ducharne A, Hourdin F, Haeffelin M, Chiriaco M, Idelkadi A (2013) Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim Dyn 40:2251–2269

    Article  Google Scholar 

  • Dudhia J (1993) A nonhydrostatic version of the Penn State/NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon Weather Rev 121:1493–1513

    Article  Google Scholar 

  • Dupont J-C, Haeffelin M, Protat A, Bounil D, Boyouk N, Morille Y (2012) Stratus-fog formation and dissipation: a 6-day case study. Boundary-Layer Meteorol 143:207–225

    Article  Google Scholar 

  • Duynkerke P (1998) Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorol 90:447–477

    Article  Google Scholar 

  • Gardner M (1988) Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. Br Med J 296:1313–1316

    Article  Google Scholar 

  • Guidard V, Tzanos D (2007) Analysis of fog probability from a combination of satellite and ground observation data. Pure Appl Geophys 164:1207–1220

    Article  Google Scholar 

  • Gultepe I, Tardif R, Michaelides S, Cermak J, Bott A, Bendix J, Muller MD, Pagowski M, Hansen B, Ellrod G, Jacobs W, Toth G, Cober SG (2007) Fog research : a review of past achievements and future perspectives. Pure Appl Geophys 164:1121–1159

    Article  Google Scholar 

  • Haeffelin M, Dupont J-C, Boyouk N, Baumgardner D, Gomes L, Roberts G, Elias T (2013) A comparative study of radiation fog and quasi-fog formation processes during the Paris Fog field experiment 2007. Pure Appl Geophys. doi:10.1007/s00024-013-0672-z (published online 3 May 2013)

  • Haeffelin M, Barthes L, Bock O, Boitel C, Bony S, Bouniol D, Chepfer H, Chiriaco M, Cuesta J, Delanoë J, Drobinski P, Dufresne J-L, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaitre Y, Mathieu A, Morille Y, Naud C, Noël V, OHirok B, Pelon J, Pietras C, Protat A, Romand B, Scialom G, Vautard R (2005) 2005: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann Geophys 23:253–275

    Article  Google Scholar 

  • Haeffelin M, Bergot T, Elias T, Tardif R, Carrer D, Chazette P, Colomb M, Drobinski P, Dupont J-C, Gomes L, Musson-Genon L, Pietras C, Plana-Fattori A, Protat A, Rangognio J, Raut J-C, Rémy S, Richard D, Sciare J, Zhang X (2010) Parisfog: shedding new light on fog physical processes. Bull Am Meteorol Soc 91:767–783

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen S (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Kain J (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Menut L, Bessagnet B (2010) Atmospheric composition forecasting in Europe. Ann Geophys 28:61–74

    Article  Google Scholar 

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmospheres: RRTM a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Musson-Genon L (1987) Numerical simulation of a fog event with a one-dimensional boundary layer model. Mon Weather Rev 115:592–607

    Article  Google Scholar 

  • Ohmura A, Gilgen H, Hegner H, Müller G, Wild M, Dutton EG, Forgan B, Fröhlich C, Philipona R, Heimo A, König-Langlo G, McArthur B, Pinker R, Whitlock CH, Dehne K (1998) Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79(10):2115–2136

    Article  Google Scholar 

  • Roquelaure S, Bergot T (2008) A local ensemble prediction system for fog and low clouds: construction, bayesian model averaging calibration, and validation. J Appl Meteor Climatol 47:3072–3088

    Article  Google Scholar 

  • Stephenson D (2000) Use of the “Odds Ratio” for diagnosing forecast skill. Weather Forecast 15:221–232

    Article  Google Scholar 

  • Tardif R, Rasmussen R (2007) Event-based climatology and typology of fog in the New York city region. J Appl Meteor Climatol 46:1141–1167

    Article  Google Scholar 

  • Wilber A, Kratz D, Gupta S (1999) Surface emissivity maps for use in satellite retrievals of longwave radiation. In: NASA technical notes, pp 1–35

  • Zaidi H, Dupont E, Milliez M, Musson-Genon L, Carissimo B (2012) Numerical simulations of the microscale heterogeneities of turbulence observed on a complex site. Boundary-Layer Meteorol:1–23

  • Zhou B, Du J (2010) Fog prediction from a multimodel mesoscale ensemble prediction system. Weather Forecast 25:303–322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Menut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menut, L., Mailler, S., Dupont, JC. et al. Predictability of the Meteorological Conditions Favourable to Radiative Fog Formation During the 2011 ParisFog Campaign. Boundary-Layer Meteorol 150, 277–297 (2014). https://doi.org/10.1007/s10546-013-9875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9875-1

Keywords

Navigation