Skip to main content
Log in

Monin–Obukhov Similarity Functions for the Structure Parameters of Temperature and Humidity

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Monin–Obukhov similarity functions for the structure parameters of temperature and humidity are needed to derive surface heat and water vapour fluxes from scintillometer measurements and it is often assumed that the two functions are identical in the atmospheric surface layer. Nevertheless, this assumption has not yet been verified experimentally. This study investigates the dissimilarity between the turbulent transport of sensible heat and water vapour, with a specific focus on the difference between the Monin–Obukhov similarity functions for the structure parameters. Using two datasets collected over homogeneous surfaces where the surface sources of sensible heat and water vapour are well correlated, we observe that under stable and very unstable conditions, the two functions are similar. This similarity however breaks down under weakly unstable conditions; in that regime, the absolute values of the correlations between temperature and humidity are also observed to be low, most likely due to large-scale eddies that transport unsteadiness, advection or entrainment effects from the outer layer. We analyze and demonstrate how this reduction in the correlation leads to dissimilarity between the turbulent transport of these two scalars and the corresponding Monin–Obukhov similarity functions for their structure parameters. A model to derive sensible and latent heat fluxes from structure parameters without measuring the friction velocity is tested and found to work very well under moderately to strongly unstable conditions (−z/L > 0.5). Finally, we discuss the modelling of the cross-structure parameter over wet surfaces, which is crucial for correcting water vapour effects on optical scintillometer measurements and also for obtaining surface sensible and latent heat fluxes from the two-wavelength scintillometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas EL (1988) Atmospheric stability from scintillation measurements. Appl Opt 27(11): 2241–2246

    Article  Google Scholar 

  • Andreas EL (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atmos Ocean Technol 6(2): 280–292

    Article  Google Scholar 

  • Andreas EL (1990) Three-wavelength method of measuring path-averaged turbulent heat fluxes. J Atmos Ocean Technol 7(6): 801–814

    Article  Google Scholar 

  • Asanuma J, Tamagawa I, Ishikawa H, Ma YM, Hayashi T, Qi YQ, Wang JM (2007) Spectral similarity between scalars at very low frequencies in the unstable atmospheric surface layer over the Tibetan plateau. Boundary-Layer Meteorol 122(1): 85–103

    Article  Google Scholar 

  • Assouline S, Tyler SW, Tanny J, Cohen S, Bou-Zeid E, Parlange MB, Katul GG (2008) Evaporation from three water bodies of different sizes and climates: measurements and scaling analysis. Adv Water Resour 31(1): 160–172

    Article  Google Scholar 

  • Beyrich F, Kouznetsov RD, Leps JP, Ludi A, Meijninger WML, Weisensee U (2005) Structure parameters for temperature and humidity from simultaneous eddy-covariance and scintillometer measurements. Meteorol Z 14(5): 641–649

    Article  Google Scholar 

  • Beyrich F, Mengelkamp HT (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment—an overview. Boundary-Layer Meteorol 121(1): 5–32

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange MB (2004) Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness. Water Resour Res 40(2): 1–18

    Article  Google Scholar 

  • Bou-Zeid E, Vercauteren N, Parlange MB, Meneveau C (2008) Scale dependence of subgrid-scale model coefficients: an a priori study. Phys Fluids 20(11): 115106-1–115106-6

    Article  Google Scholar 

  • Bou-Zeid E, Higgins C, Huwald H, Meneveau C, Parlange MB (2010) Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J Fluid Mech 665: 480–515

    Article  Google Scholar 

  • Bradley EF, Antonia RA, Chambers AJ (1982) Streamwise heat-flux budget in the atmospheric surface-layer. Boundary-Layer Meteorol 23(1): 3–15

    Article  Google Scholar 

  • Brutsaert W (1998) Land-surface water vapor and sensible heat flux: spatial variability, homogeneity, and measurement scales. Water Resour Res 34(10): 2433–2442

    Article  Google Scholar 

  • Brutsaert W (2005) Hydrology: an introduction. Cambridge University Press, New York, 605 pp

  • Cava D, Katul GG, Sempreviva AM, Giostra U, Scrimieri A (2008) On the anomalous behaviour of scalar flux–variance similarity functions within the canopy sub-layer of a dense alpine forest. Boundary-Layer Meteorol 128(1): 33–57

    Article  Google Scholar 

  • Chamecki M, Dias NL (2004) The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer. Q J Roy Meteorol Soc 130(603): 2733–2752

    Article  Google Scholar 

  • De Bruin HAR, Kohsiek W, Vandenhurk BJJM (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water-vapor using standard-deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63(3): 231–257

    Article  Google Scholar 

  • De Bruin HAR, Van Den Hurk B, Kroon LJM (1999) On the temperature–humidity correlation and similarity. Boundary-Layer Meteorol 93(3): 453–468

    Article  Google Scholar 

  • De Bruin HAR et al (1995) The scintillation method tested over a dry vineyard area. Boundary-Layer Meteorol 76(1–2):25–40

    Google Scholar 

  • De Bruin HAR et al (2002) Displaced-beam small aperture scintillometer test. Part I: The WINTEX data-set. Boundary-Layer Meteorol 105(1):129–148

    Google Scholar 

  • Detto M, Katul G, Mancini M, Montaldo N, Albertson JD (2008) Surface heterogeneity and its signature in higher-order scalar similarity relationships. Agric For Meteorol 148(6-7): 902–916

    Article  Google Scholar 

  • Dias NL, Brutsaert W (1996) Similarity of scalars under stable conditions. Boundary-Layer Meteorology 80(4): 355–373

    Article  Google Scholar 

  • Dias NL et al (2004) A study of spectra, structure and correlation functions and their implications for the stationarity of surface-layer turbulence. Boundary-Layer Meteorol 110(2):165–189

    Google Scholar 

  • Garratt JR (1990) The internal boundary-layer—a review. Boundary-Layer Meteorol 50(1-4): 171–203

    Article  Google Scholar 

  • Green AE, Astill MS, McAneney KJ, Nieveen JP (2001) Path-averaged surface fluxes determined from infrared and microwave scintillometers. Agric For Meteorol 109(3): 233–247

    Article  Google Scholar 

  • Hartogensis OK, De Bruin HAR (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116(2): 253–276

    Article  Google Scholar 

  • Hartogensis OK et al (2002) Displaced-beam small aperture scintillometer test. Part II: CASES-99 stable boundary-layer experiment. Boundary-Layer Meteorol 105(1):149–176

    Google Scholar 

  • Hill RJ (1989) Implications of Monin–Obukhov similarity theory for scalar quantities. J Atmos Sci 46(14): 2236–2244

    Article  Google Scholar 

  • Hill RJ (1997) Algorithms for obtaining atmospheric surface-layer fluxes from scintillation measurements. J Atmos Oceanic Technol 14(3): 456–467

    Article  Google Scholar 

  • Hill RJ, Clifford SF, Lawrence RS (1980) Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure-fluctuations. J Opt Soc Am 70(10): 1192–1205

    Article  Google Scholar 

  • Huwald H, Higgins CW, Boldi MO, Bou-Zeid E, Lehning M, Parlange MB (2009) Albedo effect on radiative errors in air temperature measurements. Water Resour Res 45:1–13

    Google Scholar 

  • Katul G, Hsieh CI, Sigmon J (1997) Energy-inertial scale interactions for velocity and temperature in the unstable atmospheric surface layer. Boundary-Layer Meteorol 82(1): 49–80

    Article  Google Scholar 

  • Katul GG, Hsieh CI (1999) A note on the flux–variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer. Boundary-Layer Meteorology 90(2): 327–338

    Article  Google Scholar 

  • Katul GG, Sempreviva AM, Cava D (2008) The temperature–humidity covariance in the marine surface layer: a one-dimensional analytical model. Boundary-Layer Meteorol 126(2): 263–278

    Article  Google Scholar 

  • Kleissl J et al (2008) Large aperture scintillometer intercomparison study. Boundary-Layer Meteorol 128(1):133–150

    Google Scholar 

  • Kleissl J et al (2009) Scintillometer intercomparison study—continued. Boundary-Layer Meteorol 130(3):437–443

    Google Scholar 

  • Kohsiek W (1982) Measuring Ct2, Cq2, and Ctq in the unstable surface-layer, and relations to the vertical fluxes of heat and moisture. Boundary-Layer Meteorol 24(1): 89–107

    Article  Google Scholar 

  • Lamaud E, Irvine M (2006) Temperature–humidity dissimilarity and heat-to-water-vapour transport efficiency above and within a pine forest canopy: the role of the Bowen ratio. Boundary-Layer Meteorol 120(1): 87–109

    Article  Google Scholar 

  • Lee X et al (2004) Micrometeorological fluxes under the influence of regional and local advection: a revisit. Agric For Meteorol 122(1–2):111–124

    Google Scholar 

  • Leijnse H, Uijlenhoet R, Stricker JNM (2007) Hydrometeorological application of a microwave link: 1. Evaporation. Water Resour Res 43(4):W04416

    Google Scholar 

  • Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2): 243–262

    Article  Google Scholar 

  • Ludi A, Beyrich F, Matzler C (2005) Determination of the turbulent temperature–humidity correlation from scintillometric measurements. Boundary-Layer Meteorol 117(3): 525–550

    Article  Google Scholar 

  • Mahrt L (1991) Boundary-layer moisture regimes. Q J Roy Meteorol Soc 117(497): 151–176

    Article  Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90(3): 375–396

    Article  Google Scholar 

  • McNaughton KG, Brunet Y (2002) Townsend’s hypothesis, coherent structures and Monin-Obukhov similarity. Boundary-Layer Meteorol 102(2):161–175

    Google Scholar 

  • McNaughton KG, Laubach J (1998) Unsteadiness as a cause of non-equality of eddy diffusivities for heat and vapour at the base of an advective inversion. Boundary-Layer Meteorol 88(3): 479–504

    Article  Google Scholar 

  • McNaughton KG, Laubach J (2000) Power spectra and cospectra for wind and scalars in a disturbed surface layer at the base of an advective inversion. Boundary-Layer Meteorol 96(1–2):143–185

    Google Scholar 

  • Meijninger WML, Beyrich F, Luedi A, Kohsiek W, De Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121(1): 89–110

    Article  Google Scholar 

  • Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002a) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105(1): 63–83

    Article  Google Scholar 

  • Meijninger WML, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002b) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105(1): 37–62

    Article  Google Scholar 

  • Moene AF (2003) Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorol 107(3): 635–653

    Article  Google Scholar 

  • Moene AF, Meijninger, WML, Hartogensis OK, Kohsiek W, De Bruin HAR (2004) A review of the relationships describing the signal of a Large Aperture Scintillometer. Internal Report 2004/2. Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 40 pp

  • Moene AF, Schuttemeyer D (2008) The effect of surface heterogeneity on the temperature–humidity correlation and the relative transport efficiency. Boundary-Layer Meteorol 129(1): 99–113

    Article  Google Scholar 

  • Moeng CH, Wyngaard JC (1986) An analysis of closures for pressure-scalar covariances in the convective boundary layer. J Atmos Sci 43(21): 2499–2513

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2006) Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area. Boundary-Layer Meteorol 120(1): 163–179

    Article  Google Scholar 

  • Nadeau DF et al (2009) Estimation of urban sensible heat flux using a dense wireless network of observations. Environ Fluid Mech 9(6):635–653

    Google Scholar 

  • Sempreviva AM, Gryning SE (2000) Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer. Boundary-Layer Meteorol 97(2): 273–291

    Article  Google Scholar 

  • Sempreviva AM, Hojstrup J (1998) Transport of temperature and humidity variance and covariance in the marine surface layer. Boundary-Layer Meteorol 87(2): 233–253

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 670 pp

  • Thiermann V, Grassl H (1992) The measurement of turbulent surface-layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorology 58: 367–389

    Article  Google Scholar 

  • Vercauteren N, Bou-Zeid E, Parlange MB, Lemmin U, Huwald H, Selker J, Meneveau C (2008) Subgrid-scale dynamics of water vapor, heat, and momentum over a lake. Boundary-Layer Meteorol 128(2): 205–228

    Article  Google Scholar 

  • Wang TI, Ochs GR, Clifford SF (1978) Saturation-resistant optical scintillometer to measure C–N(2). J Opt Soc Am 68(3): 334–338

    Article  Google Scholar 

  • Williams CA, Scanlon TM, Albertson JD (2007) Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Boundary-Layer Meteorol 122(1): 149–165

    Article  Google Scholar 

  • Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge, New York, 393 pp

  • Wyngaard JC, Izumi Y, Collins SA (1971) Behavior of refractive-index-structure parameter near ground. J Opt Soc Am 61(12): 1646

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Bou-Zeid, E. & De Bruin, H.A.R. Monin–Obukhov Similarity Functions for the Structure Parameters of Temperature and Humidity. Boundary-Layer Meteorol 145, 45–67 (2012). https://doi.org/10.1007/s10546-011-9660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9660-y

Keywords

Navigation