Skip to main content
Log in

Effects of Non-Uniform Crosswind Fields on Scintillometry Measurements

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The effects of a non-uniform wind field along the path of a scintillometer are investigated. Theoretical spectra are calculated for a range of scenarios where the crosswind varies in space or time and compared to the ‘ideal’ spectrum based on a constant uniform crosswind. It is verified that the refractive-index structure parameter relation with the scintillometer signal remains valid and invariant for both spatially and temporally-varying crosswinds. However, the spectral shape may change significantly preventing accurate estimation of the crosswind speed from the peak of the frequency spectrum and retrieval of the structure parameter from the plateau of the power spectrum. On comparison with experimental data, non-uniform crosswind conditions could be responsible for previously unexplained features sometimes seen in observed spectra. By accounting for the distribution of crosswind, theoretical spectra can be generated that closely replicate the observations, leading to a better understanding of the measurements. Spatial variability of wind speeds should be expected for paths other than those that are parallel to the surface and over flat, homogenous areas, whilst fluctuations in time are important for all sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheinet S, Beljaars A, Weiss-Wrana K, Hurtaud Y (2011) The use of weather forecasts to characterise near-surface optical turbulence. Boundary-Layer Meteorol 138(3): 453–473

    Article  Google Scholar 

  • Clifford SF (1971) Temporal-frequency spectra for a spherical wave propagating through atmospheric turbulence. J Opt Soc Am 61(10): 1285–1292

    Article  Google Scholar 

  • De Bruin HAR, Kohsiek W, Vandenhurk B (1993) A verification of some methods to determine the fluxes of momentum, sensible heat, and water-vapour using standard-deviation and structure parameter of scalar meteorological quantities. Boundary-Layer Meteorol 63(3): 231–257

    Article  Google Scholar 

  • Evans JG (2009) Long-path scintillometry over complex terrain to determine areal-averaged sensible and latent heat fluxes. PhD Thesis, The University of Reading, 181 pp

  • Frehlich R (1992) Laser scintillation measurements of the temperature spectrum in the atmospheric surface-layer. J Atmos Sci 49(16): 1494–1509

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived, from analysis of surface form. J Appl Meteorol 38(9): 1262–1292

    Article  Google Scholar 

  • Hartogensis OK (2006) Exploring scintillometry in the stable atmospheric surface layer. PhD Thesis, Wageningen University, 240 pp

  • Hartogensis OK, Watts CJ, Rodriguez JC, De Bruin HAR (2003) Derivation of an effective height for scintillometers: La Poza experiment in Northwest Mexico. J Hydrometeorol 4(5): 915–928

    Article  Google Scholar 

  • Hill RJ, Ochs GR (1978) Fine calibration of large-aperture optical scintillometers and an optical estimate of inner scale of turbulence. Appl Optics 17(22): 3608–3612

    Article  Google Scholar 

  • Hill RJ, Clifford SF, Lataitis RJ, Sarma AD (1990) Scintillation of millimeter-wave intensity and phase caused by turbulence and precipitation. Atmospheric propagation in the UV, visible, IR and MM-wave region and related systems aspects (AGARD-CP-454), 9–13 October 1990, Copenhagen, Denmark

  • Hill RJ, Ochs GR, Wilson JJ (1992) Measuring surface-layer fluxes of heat and momentum using optical scintillation. Boundary-Layer Meteorol 58(4): 391–408

    Article  Google Scholar 

  • Irvine M, Lagouarde JP, Bonnefond JM, Grimmond CSB, Oke T (2002) Spectral analyzes of optical scintillation: refraction and absorption components in an urban zone. In: Preprint Fourth symposium on the Urban environment. AMS, Norfolk, Virginia, USA

  • Kanda M, Moriwaki R, Roth M, Oke T (2002) Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Boundary-Layer Meteorol 105(1): 177–193

    Article  Google Scholar 

  • Kipp and Zonen (2005) Large aperture scintillometer instruction manual. Delft, The Netherlands, 70 pp

    Google Scholar 

  • Kohsiek W (1982) Measuring Ct2, Cq2, and Ctq in the unstable surface-layer, and relations to the vertical fluxes of heat and moisture. Boundary-Layer Meteorol 24(1): 89–107

    Article  Google Scholar 

  • Lagouarde JP, Irvine M, Bonnefond JM, Grimmond CSB, Long N, Oke TR, Salmond JA, Offerle B (2006) Monitoring the sensible heat flux over urban areas using large aperture scintillometry: case study of Marseille city during the Escompte experiment. Boundary-Layer Meteorol 118(3): 449–476

    Article  Google Scholar 

  • Lawrence RS, Ochs GR, Clifford SF (1972) Use of scintillations to measure average wind across a light-beam. Appl Optics 11(2): 239–243

    Article  Google Scholar 

  • Medeiros Filho F, Jayasuriya D, Cole R, Helmis C (1983) Spectral density of millimeter wave amplitude scintillations in an absorption region. IEEE Trans Antennas Propag 31(4): 672–676

    Article  Google Scholar 

  • Meijninger WML (2003) Surface fluxes over natural landscapes using scintillometry. PhD, Wageningen University, 170 pp

  • Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM, De Bruin HAR (2002) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105(1): 63–83

    Article  Google Scholar 

  • Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, De Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to Litfass-2003. Boundary-Layer Meteorol 121(1): 89–110

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence. MIT, Cambridge, 782 pp

    Google Scholar 

  • Nieveen JP, Green AE, Kohsiek W (1998) Using a large-aperture scintillometer to measure absorption and refractive index fluctuations. Boundary-Layer Meteorol 87(1): 101–116

    Article  Google Scholar 

  • Otto WD, Hill RJ, Sarma AD, Wilson JJ, Andreas EL, Gosz JR, Moore DI (1996) Results of the millimeter-wave instrument operated at Sevilleta, New Mexico. Natl Oceanic Atmos Admin, pp 47

    Google Scholar 

  • Poggio LP, Furger M, Prevot ASH, Graber WK, Andreas EL (2000) Scintillometer wind measurements over complex terrain. J Atmos Ocean Technol 17(1): 17–26

    Article  Google Scholar 

  • Potvin G, Dion D, Forand JL (2005) Wind effects on scintillation decorrelation times. Opt Eng 44(1): 1–12

    Article  Google Scholar 

  • Rao RZ, Wang SP, Liu XC, Gong ZB (1999) Turbulence spectrum effect on wave temporal-frequency spectra for light propagating through the atmosphere. J Opt Soc Am A Opt Image Sci Vis 16(11): 2755–2762

    Article  Google Scholar 

  • Roth M, Salmond JA, Satyanarayana ANV (2006) Methodological considerations regarding the measurement of turbulent fluxes in the urban roughness sublayer: the role of scintillometry. Boundary-Layer Meteorol 121(2): 351–375

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 pp

    Google Scholar 

  • Tatarski VI (1961) Wave propagation in a turbulent medium. McGraw-Hill, New York, 285 pp

    Google Scholar 

  • Van Kesteren AJH (2008) Sensible and latent heat fluxes with optical and millimetre wave scintillometers: a theory review and the Chilbolton experiment. Masters, Wageningen University, 99 pp

    Google Scholar 

  • Von Randow C, Kruijt B, Holtslag AAM, de Oliveira MBL (2008) Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest. Agric For Meteorol 148(4): 680–690

    Article  Google Scholar 

  • Wang TI, Ochs GR, Clifford SF (1978) A saturation-resistant optical scintillometer to measure C2n. J Opt Soc Am 68(3): 334–338

    Article  Google Scholar 

  • Wang TI, Ochs GR, Lawrence RS (1981) Wind measurements by the temporal cross-correlation of the optical scintillations. Appl Opt 20(23): 4073–4081

    Article  Google Scholar 

  • Wheelon AD (2006) Electromagnetic scintillation: weak scattering. Cambridge University Press, UK, 446 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, H.C., Evans, J.G. & Grimmond, C.S.B. Effects of Non-Uniform Crosswind Fields on Scintillometry Measurements. Boundary-Layer Meteorol 141, 143–163 (2011). https://doi.org/10.1007/s10546-011-9626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9626-0

Keywords

Navigation