Skip to main content
Log in

Effect of temperature and ultraviolet light on the bacterial kill effectiveness of antibiotic-infused 3D printed implants

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Drug eluting 3D printed polymeric implants have great potential in orthopaedic applications since they are relatively inexpensive and can be designed to be patient specific thereby providing quality care. Fused Deposition Modeling (FDM) and Stereolithography (SLA) are among the most popular techniques available to print such polymeric implants. These techniques facilitate introducing antibiotics into the material at microscales during the manufacturing stage and subsequently, the printed implants can be engineered to release drugs in a controlled manner. However, FDM uses high temperature to melt the filament as it passes through the nozzle and SLA relies on exposure to nanoscale wavelength ultraviolet (UV) light which can adversely affect the anti-bacterial effectiveness of the antibiotics. The focus of this article is two-fold: i) Examine the effect of high temperature on the bacterial kill-effectiveness of eluted antibiotics through Polycaprolactone (PCL) based femoral implants and ii) Examine the effect of exposure to ultraviolet (UV) light on the bacterial kill-effectiveness of eluted antibiotics through femoral implants made up of a composite resin with various weight fractions of Polyethylene Glycol (PEG) and Polyethylene Glycol Diacrylate (PEGDA). Results indicate that even after exposing doxycycline, vancomycin and cefazolin at different temperatures between 20oC and 230oC, the antibiotics did not lose their effectiveness (kill radius of at least 0.85 cm). For doxycycline infused implants exposed to UV light, it was seen that a resin with 20 % PEGDA and 80 % PEG had the highest efficacy (1.8 cm of kill radius) and the lowest efficacy was found in an implant with 100 % PEGDA (1.2 cm of kill radius).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • J. J. Beaman, J. W. Barlow, D. Bourell, R. Crawford, H. Marcus, K. McAlea, in Process method. Solid freeform fabrication: A new direction in manufacturing. 1st edn., Vol. 36 (Springer, 1997), pp. 23–49

  • J. W. Comb, W. R. Priedeman, P. W. Turley, in FDM technology process improvements. 1994 International Solid Freeform Fabrication Symposium, (1994), pp. 42–49

  • P. F. Jacobs, Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers (1992)

  • M. Feygin, B. Hsieh, in Laminated object manufacturing (LOM): a simpler process. 1991 International Solid Freeform Fabrication Symposium, (1991)

  • I. T. Ozbolat, K. K. Moncal, H. Gudapati, Evaluation of bioprinter technologies. Additive Manufacturing. 13, 179–200 (2017)

    Google Scholar 

  • A. Lopez, R. Bacelar, I. Pires, T. G. Santos, J. P. Sousa, L. Quintino, Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Additive Manufacturing. 21, 298–306 (2018)

    Google Scholar 

  • S.S. Gill, H. Arora, V.S. Jidesh, On the development of Antenna feed array for space applications by additive manufacturing technique. Additive Manufacturing. 17, 39–46 (2017)

    Google Scholar 

  • H. Castro, V. Correia, N. Pereira, P. Costab, J. Oliveiraa, S. Lanceros-Méndez, Printed Wheatstone bridge with embedded polymer based piezoresistive sensors for strain sensing applications. Additive Manufacturing. 20, 119–125 (2018)

    Google Scholar 

  • V. Juechter, M. Franke, T. Merenda, A. Stich, C. Körner, R. Singer, Additive manufacturing of Ti-45Al-4Nb-C by selective electron beam melting for automotive applications. Additive Manufacturing. 22, 118–126 (2018)

    Google Scholar 

  • D. Romano, J. Bloemberg, M. Tannous, C. Stefanini, Impact of aging and cognitive mechanisms on high-speed motor activation patterns: Evidence from an orthoptera-robot interaction. IEEE Transactions on Medical Robotics and Bionics, pp. 1–1 (2020)

  • I. Eldesouky, O. Harrysson, H. West, H. Elhofy, Electron beam melted scaffolds for orthopedic applications. Additive Manufacturing. 17, 169–175 (2017)

    Google Scholar 

  • M. Petrak, L. M. Rodgers, Antimicrobial articles produced by additive manufacturing, US Patent App. 14/441,637 (2015)

  • S. I. Ranganathan, T. W. B. Kim, D. J. Campbell, G.C. Smith, Novel biodegradable and non-biodegradable 3d printed implants as a drug delivery system. US Patent App 15/736,885 (2018)

  • T. W. B. Kim, O. J. Lopez, J. P. Sharkey, K. R. Marden, M. R. Murshed, S. I. Ranganathan, 3D printed liner for treatment of periprosthetic joint infections. Med. Hypotheses. 102, 65–68 (2017)

    Google Scholar 

  • M. M. Benmassaoud, C. Kohama, T. W. B. Kim, J. A. Kadlowec, B. Foltiny, T. Mercurio, S. I. Ranganathan, Efficacy of eluted antibiotics through 3d printed femoral implants. Biomed. Microdevices. 21(51), 1–10 (2019)

    Google Scholar 

  • D. Radenkovic, A. Solouk, A. Seifalian, Personalized development of human organs using 3D printing technology. Med. Hypotheses. 87, 30–33 (2016)

    Google Scholar 

  • M. S. Mannoor, Z. Jiang, T. James, Y. L. Kong, K. A. Malatesta, W. O. Soboyejo, N. Verma, D. H. Gracias, M.C. McAlpine, 3D printed bionic ears. Nano letters. 13, 2634–2639 (2013)

    Google Scholar 

  • F. Rengier, A. Mehndiratta, H. von Tengg-Kobligk, C. M. Zechmann, R. Unterhinninghofen, H. -U. Kauczor, F.L. Giesel, 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 5, 335–341 (2010)

    Google Scholar 

  • J. A. Weisman, J. C. Nicholson, K. Tappa, U. Jammalamadaka, C. G. Wilson, D. K. Mills, Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int. J. Nanomed. 10, 357–370 (2015)

    Google Scholar 

  • J. A. DiPisa, G. S. Sih, A. T. Berman, The temperature problem at the bone-acrylic cement interface of the total hip replacement. Clin. Orthop. Relat. Res. 121, 95–98 (1976)

    Google Scholar 

  • M. Zilberman, J. J. Elsner, Antibiotic-eluting medical devices for various applications. J. Control. Release. 130, 202–215 (2008)

    Google Scholar 

  • R. Horvart, Antimicrobial agents: Antibacterials and antifungals,. Shock. 25, 659–659 (2006)

    Google Scholar 

  • S. Budavari, The Merck Index, an encyclopedia of chemical drug, and biologicals, Tech. rep., Merck (1989)

  • C. Reyes, J. Fernández, J. Freer, M. Mondaca, C. Zaror, S. Malato, H. Mansilla, Degradation and inactivation of tetracycline by TiO2 photocatalysis. J. Photochem. Photobiol. A Chem. 184(1), 141–146 (2006)

    Google Scholar 

  • R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 11, 209–227 (2013)

    Google Scholar 

  • Y. Chen, H. Li, Z. Wang, T. Tao, D. Wei, C. Hu, Photolysis of Chlortetracycline in aqueous solution: Kinetics, toxicity and products. J. Environ. Sci. 24(2), 254–260 (2012)

    Google Scholar 

  • S. Jiao, S. Zheng, D. Yin, L. Wang, L. Chen, Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere. 73(3), 377–382 (2008a)

    Google Scholar 

  • S. Jiao, S. Zheng, D. Yin, L. Wang, L. Chen, Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. J. Environ. Sci. 20(7), 806–813 (2008b)

    Google Scholar 

  • B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, D.M. Spence, Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences (2014)

  • D.T. Pham, R.S. Gault, A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 38, 1257–1287 (1998)

    Google Scholar 

  • Z. Weng, J. Wang, T. Senthil, L. Wu, Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials & Design. 102, 276–283 (2016)

    Google Scholar 

  • A. Waldbaur, H. Rapp, K. Länge, B. E. Rapp, Let there be chip—towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal. Methods. 3, 2681–2716 (2011)

    Google Scholar 

  • F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials. 31(24), 6121–6130 (2010)

    Google Scholar 

  • M.B. Hoy, 3D printing: making things at the library. Med. Ref. Serv. Q. 32(1), 93–99 (2013)

    Google Scholar 

  • J. R. C. Dizon, A. H. Espera, Q. Chen, R. C. Advincula, Mechanical characterization of 3D-printed polymers. Additive Manufacturing. 20, 44–67 (2018)

    Google Scholar 

  • A. Bauer, W. Kirby, J. C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4_ts), 493–496 (1966)

    Google Scholar 

  • M. K. Hospenthal, T. R. Costa, G. Waksman, A comprehensive guide to pilus biogenesis in gram-negative bacteria. Nature Reviews Microbiology. 15(6), 365–379 (2017)

    Google Scholar 

  • J. Wolfram, M. Ferrari, Clinical cancer nanomedicine. Nano Today. 25, 85–98 (2019)

    Google Scholar 

  • Y. Mi, J. Wolfram, C. Mu, X. Liu, E. Blanco, H. Shen, M. Ferrari, Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacol. Res. 113, 92–99 (2016)

    Google Scholar 

  • O. S. Carneiro, A. F. Silva, R. Gomes, Fused deposition modeling with polypropylene. Materials & Design. 83, 768–776 (2015)

    Google Scholar 

  • S. Mahmood, A.J. Qureshi, D. Talamona, Taguchi based process optimization for dimension and tolerance control for fused deposition modelling. Additive Manufacturing. 21, 183 – 190 (2018)

    Google Scholar 

  • A. Boschetto, L. Bottini, F. Veniali, Integration of FDM surface quality modeling with process design. Additive Manufacturing. 12, 334–344 (2016)

    Google Scholar 

  • M. A. Woodruff, D. W. Hutmacher, The return of a forgotten polymer—polycaprolactone in the 21st century. Progress in Polymer Science. 35(10), 1217–1256 (2010)

    Google Scholar 

  • A. Coombes, S. Rizzi, M. Williamson, J. Barralet, S. Downes, W. Wallace, Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials. 25(2), 315–325 (2004)

    Google Scholar 

  • S. Senapati, R. Shukla, Y. B. Tripathi, A. K. Mahanta, D. Rana, P. Maiti, Engineered cellular uptake and controlled drug delivery using two dimensional nanoparticle and polymer for cancer treatment. Mol. Pharm. 15(2), 679–694 (2018)

    Google Scholar 

  • A. Rai, S. Senapati, S. K. Saraf, P. Maiti, Biodegradable poly(caprolactone) as a controlled drug delivery vehicle of vancomycin for the treatment of mrsa infection. J. Mater. Chem. B. 4, 5151–5160 (2016)

    Google Scholar 

  • B. Wittbrodt, J. M. Pearce, The effects of PLA color on material properties of 3-D printed components. Additive Manufacturing. 8, 110–116 (2015)

    Google Scholar 

  • A. Goyanes, U. Det-Amornrat, J. Wang, A. W. Basit, S. Gaisford, 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J. Control. Release. 234, 41–48 (2016)

    Google Scholar 

  • J. Wang, A. Goyanes, S. Gaisford, A. W. Basit, Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. International Journal of Pharmaceutics. 503(1), 207 – 212 (2016)

    Google Scholar 

  • A. J. Guerra, P. Cano, M. Rabionet, T. Puig, J. Ciurana, Effects of different sterilization processes on the properties of a novel 3d-printed polycaprolactone stent. Polym. Adv. Technol. 29(8), 2327–2335 (2018)

    Google Scholar 

  • S. Nemir, H. N. Hayenga, J. L. West, Pegda hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity. Biotechnol. Bioeng. 105(3), 636–644 (2010)

    Google Scholar 

  • V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, O. Akkus, Mechanical properties, cytocompatibility and manufacturability of chitosan: Pegda hybrid-gel scaffolds by stereolithography. Annals of Biomed. Eng. 45(1), 286–296 (2017)

    Google Scholar 

  • N. N. Goswami, H. R. Trivedi, A. P. P. Goswami, T. K. Patel, C. Tripathi, Antibiotic sensitivity profile of bacterial pathogens in postoperative wound infections at a tertiary care hospital in gujarat, india. Journal of Pharmacology & Pharmacotherapeutics. 2(3), 158 (2011)

    Google Scholar 

  • G. Sezonov, D. Joseleau-Petit, R. d’Ari, Escherichia coli physiology in Luria-Bertani broth. Journal of Bacteriology. 189(23), 8746–8749 (2007)

    Google Scholar 

  • B. Bonev, J. Hooper, J. Parisot, Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. Journal of Antimicrobial Chemotherapy. 61(6), 1295–1301 (2008)

    Google Scholar 

  • M. A. Lobritz, P. Belenky, C. B. Porter, A. Gutierrez, J. H. Yang, E. G. Schwarz, D. J. Dwyer, A. S. Khalil, J. J. Collins, Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. 112(27), 8173–8180 (2015)

    Google Scholar 

  • M. Hassani, R. Làzaro, C. Pérez, S. Condón, R. Pagán, Thermostability of Oxytetracycline, Tetracycline, and Doxycycline at Ultrahigh Temperatures. J. Agric. Food Chem. 56(8), 2676–2680 (2008)

    Google Scholar 

  • S. N. Dean, B. M. Bishop, M. L. Van Hoek, Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against staphylococcus aureus. BMC Microbiology. 11(1), 1–13 (2011)

    Google Scholar 

Download references

Acknowledgments

This research was funded through the Innovation Grant from New Jersey Health Foundation and The Nicholson Foundation. The authors are thankful to Dr. Claude Krummenacher for providing lab space for kill studies as well as Mr. Chris Zaleski for assistance with 3D printing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivakumar I. Ranganathan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranganathan, S.I., Kohama, C., Mercurio, T. et al. Effect of temperature and ultraviolet light on the bacterial kill effectiveness of antibiotic-infused 3D printed implants. Biomed Microdevices 22, 59 (2020). https://doi.org/10.1007/s10544-020-00512-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00512-5

Keywords

Navigation