Skip to main content
Log in

Enhanced particle self-ordering in a double-layer channel

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this work, a novel double-layer microfluidic device for enhancing particle focusing was presented. The double-layer device consists of a channel with expansion-contraction array and periodical slanted grooves. The secondary flows induced by the grooves modulate the flow patterns in the expansion-contraction-array (ECA) channel, further affecting the particle migration. Compared with the single ECA channel, the double-layer channel can focus the particles over a wider range of flow rate. Due to the differentiation of lateral migration, the double-layer channel is able to distinguish the particles with different sizes. Furthermore, the equilibrium positions could be modulated by the orientation of grooves. This work demonstrates the possibility to enhance and adjust the inertial focusing in an ECA channel with the assistance of grooves, which may provide a simple and portable platform for downstream filtration, separation, and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • M. Abbas, P. Magaud, Y. Gao, S. Geoffroy, Phys. Fluids 26, 136–157 (2014)

    Article  Google Scholar 

  • E.S. Asmolov, J. Fluid Mech. 381, 63–87 (1999)

    Article  Google Scholar 

  • Y. Chen, A.A. Nawaz, Y. Zhao, P.H. Huang, J.P. Mccoy, S.J. Levine, L. Wang, T.J. Huang, Lab Chip 14, 916–923 (2014)

    Article  Google Scholar 

  • S. Choi, S. Song, C. Choi, J.K. Park, Small 4, 634–641 (2008)

    Article  Google Scholar 

  • S. Choi, S. Song, C. Choi, J.-K. Park, Anal. Chem. 81, 1964–1968 (2009a)

    Article  Google Scholar 

  • S. Choi, S. Song, C. Choi, J.-K. Park, Anal. Chem. 81, 50–55 (2009b)

    Article  Google Scholar 

  • H. Chu, I. Doh, Y.H. Cho, Lab Chip 9, 686–691 (2009)

    Article  Google Scholar 

  • B. Chun, A.J.C. Ladd, Phys. Fluids 18, 136 (2006)

    Article  Google Scholar 

  • D. Di Carlo, Lab Chip 9, 3038–3046 (2009)

    Article  Google Scholar 

  • D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl. Acad. Sci. U. S. A. 104, 18892–18897 (2007)

    Article  Google Scholar 

  • D. Di Carlo, J.F. Edd, D. Irimia, R.G. Tompkins, M. Toner, Anal. Chem. 80, 2204–2211 (2008)

    Article  Google Scholar 

  • N. Gadish, J. Voldman, Anal. Chem. 78, 7870–7876 (2006)

    Article  Google Scholar 

  • G. Goddard, J.C. Martin, S.W. Graves, G. Kaduchak, Cytometry A 69A, 66–74 (2006)

    Article  Google Scholar 

  • C.H. Hsu, D. Di Carlo, C. Chen, D. Irimia, M. Toner, Lab Chip 8, 2128–2134 (2008)

    Article  Google Scholar 

  • Y. Jia, Y. Ren, H. Jiang, RSC Adv. 5, 66602–66610 (2015)

    Article  Google Scholar 

  • D. Jiang, W. Tang, N. Xiang, Z. Ni, RSC Adv. 6, 57647–57657 (2016)

  • S.S. Kuntaegowdanahalli, A.A.S. Bhagat, G. Kumar, I. Papautsky, Lab Chip 9, 2973–2980 (2009)

    Article  Google Scholar 

  • L. Landau, E. Lifshitz, Fluid Mech, 2nd edn., vol. 6 (Pergamon Press, 1987)

  • M.G. Lee, S. Choi, J.K. Park, Lab Chip 9, 3155 (2009)

    Article  Google Scholar 

  • M.G. Lee, S. Choi, J.K. Park, J. Chromatogr. A 1218, 4138–4143 (2011a)

    Article  Google Scholar 

  • M.G. Lee, S. Choi, H.J. Kim, H.K. Lim, J.H. Kim, N. Huh, J.K. Park, Appl. Phys. Lett. 98, 253702 (2011b)

    Article  Google Scholar 

  • M.G. Lee, J.H. Shin, C.Y. Bae, S. Choi, J.K. Park, Anal. Chem. 85, 6213–6218 (2013)

    Article  Google Scholar 

  • M. Li, S. Li, W. Cao, W. Li, W. Wen, G. Alici, Microfluid. Nanofluid. 14, 527–539 (2013)

    Article  Google Scholar 

  • C. Liu, C. Xue, J. Sun, G. Hu. Lab Chip 16, 884 (2016)

    Article  Google Scholar 

  • M.J. Moehlenbrock, A.K. Price, R.S. Martin, Analyst 131, 930 (2006)

    Article  Google Scholar 

  • N. Nivedita, Biomicrofluidics 7, 054101 (2013)

    Article  Google Scholar 

  • G. Segre, Nature 189, 209–210 (1961)

    Article  Google Scholar 

  • G. Segre, A. Silberberg, J. Fluid Mech. 14, 136–157 (1962)

    Article  Google Scholar 

  • J. Shi, S. Yazdi, S.C. Lin, X. Ding, I.K. Chiang, K. Sharp, T.J. Huang, Lab Chip 11, 2319–2324 (2011)

    Article  Google Scholar 

  • C. Simonnet, A. Groisman, Anal. Chem. 78, 5653 (2006)

    Article  Google Scholar 

  • A.D. Stroock, Science 295, 647–651 (2002)

    Article  Google Scholar 

  • J. Sun, M. Li, C. Liu, Y. Zhang, D. Liu, W. Liu, G. Hu, X. Jiang, Lab Chip 12, 3952–3960 (2012)

    Article  Google Scholar 

  • S.Y. Tang, W. Zhang, S. Baratchi, M. Nasabi, K. Kalantar-Zadeh, K. Khoshmanesh, Anal. Chem. 85, 6364–6371 (2013)

    Article  Google Scholar 

  • M. E. Warkiani, A. K. P. Tay, G. Guan, J. Han, Sci. Rep., 5, 11018 (2015)

  • N. Xiang, K. Chen, Q. Dai, D. Jiang, D. Sun, Z. Ni, Microfluid. Nanofluid. 18, 29–39 (2015a)

    Article  Google Scholar 

  • N. Xiang, Z. Shi, W. Tang, D. Huang, X. Zhang, Z. Ni, RSC Adv. 5, 77264–77273 (2015b)

    Article  Google Scholar 

  • S. Yan, J. Zhang, G. Alici, H. Du, Y. Zhu, W. Li, Lab Chip, 2014, 14, 2993–3003

  • S. Yan, J. Zhang, D. Yuan, Q. Zhao, J. Ma, W. Li, Appl. Phys. Lett. 109, 214101 (2016a)

    Article  Google Scholar 

  • S. Yan, J. Zhang, H. Chen, D. Yuan, G. Alici, H. Du, Y. Zhu, W. Li, Biomed. Microdevices 18, 1–9 (2016b)

    Article  Google Scholar 

  • S. Yan, S.H. Tan, Y. Li, S. Tang, A.J.T. Teo, J. Zhang, Q. Zhao, D. Yuan, R. Sluyter, N.T. Nguyen, Microfluid. Nanofluid. 22, 8 (2018)

    Article  Google Scholar 

  • D. Yuan, J. Zhang, S. Yan, G. Peng, Q. Zhao, G. Alici, H. Du, W. Li, Electrophoresis (2016). https://doi.org/10.1002/elps.201600102

  • D. Yuan, S.H. Tan, R. Sluyter, Q. Zhao, S. Yan, N.T. Nguyen, J. Guo, J. Zhang, W. Li, Anal. Chem. 89, 9574–9582 (2017)

    Article  Google Scholar 

  • J. Zhang, M. Li, W. H. Li, G. Alici. 23, 085023 (2013)

  • J. Zhang, S. Yan, R. Sluyter, W. Li, G. Alici, N.-T. Nguyen, Sci. Rep. 4, 4527 (2014a)

    Article  Google Scholar 

  • J. Zhang, W. Li, M. Li, G. Alici, N.-T. Nguyen, Microfluid. Nanofluid. 17, 305–316 (2014b)

    Article  Google Scholar 

  • J. Zhang, S. Yan, D. Yuan, G. Alici, N.-T. Nguyen, M.E. Warkiani, W. Li, Lab Chip 16, 10–34 (2016)

    Article  Google Scholar 

  • Q. Zhao, J. Zhang, S. Yan, D. Yuan, H. Du, G. Alici, W. Li. Sci. Rep. 7, 41153 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Sheng Yan is the recipient of the 2018 Endeavour Research Fellowship funded by the Australian Department of Education and Training. Dr. Shi-Yang Tang is the recipient of the Vice-Chancellor’s Postdoctoral Research Fellowship funded by the University of Wollongong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Yan or Weihua Li.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Li, Y., Zhao, Q. et al. Enhanced particle self-ordering in a double-layer channel. Biomed Microdevices 20, 23 (2018). https://doi.org/10.1007/s10544-018-0269-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0269-5

Keywords

Navigation