Skip to main content
Log in

Full-wafer in-situ fabrication and packaging of microfluidic flow cytometer with photo-patternable adhesive polymers

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Integration of microelectronics with microfluidics enables sophisticated lab-on-a-chip devices for sensing and actuation. In this paper, we investigate a novel method for in-situ microfluidics fabrication and packaging on wafer level. Two novel photo-patternable adhesive polymers were tested and compared, PA-S500H and DXL-009. The microfluidics fabrication method employs photo lithographical patterning of spin coated polymer films of PA or DXL and direct bonding of formed microfluidics to a top glass cover using die-to-wafer level bonding. These new adhesive materials remove the need for additional gluing layers. With this approach, we fabricated disposable microfluidic flow cytometers and evaluated the performance of those materials in the context of this application. DXL-009 exhibits lower autofluorescence compared to PA-S500H which improves detection sensitivity of fluorescently stained cells. Results obtained from the cytotoxicity test reveals that both materials are biocompatible. The functionality of these materials was demonstrated by detection of immunostained monocytes in microfluidic flow cytometers. The flexible, fully CMOS compatible fabrication process of these photo-patternable adhesive materials will simplify prototyping and mass manufacturing of sophisticated microfluidic devices with integrated microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Y. Adiguzel, H. Kulah, CMOS Cell Sensors for Point-of-Care Diagnostics. Sensors (Basel, Switzerland) 12(8), 10042–10066 (2012). https://doi.org/10.3390/s120810042

    Article  Google Scholar 

  • H.E. Ayliffe, A.B. Frazier, R.D. Rabbitt, Electric impedance spectroscopy using microchannels with integrated metal electrodes. J. Microelectromech. Syst. 8(1), 50–57 (1999)

    Article  Google Scholar 

  • B. Bilenberg, PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics. J. Micromech. Microeng. 14(6), 814–818 (2004). https://doi.org/10.1088/0960-1317/14/6/008

    Article  Google Scholar 

  • F.J. Blanco, Novel three-dimensional embedded su-8 microchannels fabricated using a low temperature full wafer adhesive bonding. J. Micromech. Microeng. 14(7), 1047–1056 (2004). https://doi.org/10.1088/0960-1317/14/7/027

    Article  Google Scholar 

  • K. De Wijs, C. Liu, A. Dusa, D. Vercruysse, B. Majeed, D.S. Tezcan, et al., Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting. Lab Chip 17(7), 1287–1296 (2017)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J. Schueller, G.M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem. 70(23), 4974–4984 (1998). https://doi.org/10.1021/ac980656z

    Article  Google Scholar 

  • K.R. Hawkins, P. Yager, Nonlinear decrease of background fluorescence in polymer thin-films – a survey of materials and how they can complicate fluorescence detection in μTAS. Lab Chip 3(4), 248–252 (2003). https://doi.org/10.1039/b307772c

    Article  Google Scholar 

  • D. Holmes, D. Pettigrew, C.H. Reccius, J.D. Gwyer, C. van Berkel, J. Holloway, et al., Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9(20), 2881–2889 (2009)

    Article  Google Scholar 

  • J. Kim, I. Kim, K. W. Paik 'Investigation of various photo-patternable adhesive materials and their processing conditions for MEMS sensor wafer bonding' 2011 I.E. 61st Electronic Components and Technology Conference (ECTC). pp. 1839–1846 (2011)

  • G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, et al., Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23(13), 2737–2750 (2001). https://doi.org/10.1016/s0142-9612(02)00007-8

    Article  Google Scholar 

  • P. Li, Z. Mao, Z. Peng, L. Zhou, Y. Chen, P.-H. Huang, et al., Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. U. S. A. 112(16), 4970–4975 (2015)

    Article  Google Scholar 

  • J. Linton, S.W. Oram, Next-Generation Flow Sorting: Silicon Microchip Capable of High-Frequency Fluidic Valving at Heart of Technology. Genet. Eng. News 33(12), 30–31 (2013)

    Article  Google Scholar 

  • S.D. Llopis, W. Stryjewski, S.A. Soper, Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices. Electrophoresis 25(21–22), 3810 (2004)

    Article  Google Scholar 

  • G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, et al., Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors 15(12), 30011–30031 (2015)

    Article  Google Scholar 

  • B. Majeed, C Liu, L, Van Acker., R. Daily, T. Miyazaki, D. Sabuncuoglu, et al. 'Fabrication of silicon based microfluidics device for cell sorting application' 2014 I.E. 64th Electronic Components and Technology Conference (ECTC). IEEE, pp. 165–169 (2014)

  • K. Microchem, SU-8 3000 Permanent Epoxy Negative Photoresist. http://microchem.com/pdf/SU-8%203000%20Data%20Sheet.pdf.  Data Sheet. (2006)

  • F. Niklaus, P. Enoksson, E. Kälvesten, G. Stemme, Low-temperature full wafer adhesive bonding 11(2), 100 (2001)

    Google Scholar 

  • J.-H. Pai, Y. Wang, G.T.A. Salazar, C.E. Sims, M. Bachman, G. Li, et al., A photoresist with low fluorescence for bioanalytical applications. Anal. Chem. 79(22), 8774 (2007)

    Article  Google Scholar 

  • J.P. Robinson, M. Roederer, Flow cytometry strikes gold. Science 350(6262), 739–740 (2015)

    Article  Google Scholar 

  • F. Saharil, F. Forsberg, Y. Liu, P. Bettotti, N. Kumar, F. Niklaus, et al., Dry adhesive bonding of nanoporous inorganic membranes to microfluidic devices using the oste(+) dual-cure polymer. Dry adhesive bonding of nanoporous inorganic membranes to microfluidic devices using the OSTE(+) dual-cure polymer 23(2), 025021 (2013). https://doi.org/10.1088/0960-1317/23/2/025021

    Google Scholar 

  • P. Salvo, R. Verplancke, F. Bossuyt, D. Latta, B. Vandecasteele, C. Liu, et al., Adhesive bonding by SU- 8 transfer for assembling microfluidic devices. Microfluid. Nanofluid. 13(6), 987–991 (2012). https://doi.org/10.1007/s10404-012-1011-x

    Article  Google Scholar 

  • J. Steigert, O. Brett, C. Müller, M. Strasser, N. Wangler, H. Reinecke, et al., A versatile and flexible low-temperature full-wafer bonding process of monolithic 3d microfluidic structures in SU-8. J. Micromech. Microeng. 18(9), 095013 (2008). https://doi.org/10.1088/0960-1317/18/9/095013

    Article  Google Scholar 

  • W. Tang, D. Tang, Z. Ni, N. Xiang, H. Yi, Microfluidic Impedance Cytometer with Inertial Focusing and Liquid Electrodes for High-Throughput Cell Counting and Discrimination. Anal. Chem. 89(5), 3154–3161 (2017). https://doi.org/10.1021/acs.analchem.6b04959

    Article  Google Scholar 

  • M.G. Voronkov, V. P. Mileshkevich, Yu. A. Yuzhelevski, The Siloxane Bond (Consultants Bureau, New York, 1978)

  • Voskerician, G., Shive, M. S., Shawgo, R. S., Von Recum, H., Anderson, J. M., Cima, M. J., et al. (2003). Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials, 24(11), 1959-1967

  • M.B. Wabuyele, S.M. Ford, W. Stryjewski, J. Barrow, S.A. Soper, Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices. Electrophoresis 22(18), 3939–3948 (2001). https://doi.org/10.1002/1522-2683(200110)22:18<3939::aid-elps3939>3.0.co;2-9

    Article  Google Scholar 

  • L. Xiong, P. Chen, Q. Zhou, Adhesion promotion between PDMS and glass by oxygen plasma pre-treatment. J. Adhes. Sci. Technol. 28(11), 1046–1054 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the European Research Council under the Consolidator Grant (SCALPEL; grant agreement no. 617312) and KU Leuven under the Industrial Research Fund (IRF) (IOFHB/09/037). The authors wish to thank Thomas Nyutten for measuring the fluorescent spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen de Wijs.

Electronic supplementary material

ESM 1

(DOCX 1055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Wijs, K., Liu, C., Majeed, B. et al. Full-wafer in-situ fabrication and packaging of microfluidic flow cytometer with photo-patternable adhesive polymers . Biomed Microdevices 20, 2 (2018). https://doi.org/10.1007/s10544-017-0243-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0243-7

Keywords

Navigation