Skip to main content
Log in

Microfluidic gut-on-a-chip with three-dimensional villi structure

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Current in vitro gut models lack physiological relevance, and various approaches have been taken to improve current cell culture models. For example, mimicking the three-dimensional (3D) tissue structure or fluidic environment has been shown to improve the physiological function of gut cells. Here, we incorporated a collagen scaffold that mimics the human intestinal villi into a microfluidic device, thus providing cells with both 3D tissue structure and fluidic shear. We hypothesized that the combined effect of 3D structure and fluidic shear may provide cells with adequate stimulus to induce further differentiation and improve physiological relevance. The physiological function of our ‘3D gut chip’ was assessed by measuring the absorptive permeability of the gut epithelium and activity of representative enzymes, as well as morphological evaluation. Our results suggest that the combination of fluidic stimulus and 3D structure induces further improvement in gut functions. Our work provides insight into the effect of different tissue environment on gut cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • J.W. Allen, S.N. Bhatia, Biotechnol. Bioeng. 82(3), 253–262 (2003)

    Article  Google Scholar 

  • P. Artursson, K. Palm, K. Luthman, Adv. Drug Deliv. Rev. 46(1–3), 27–43 (2001)

    Article  Google Scholar 

  • A. Beduneau, C. Tempesta, S. Fimbel, Y. Pellequer, V. Jannin, F. Demarne, A. Lamprecht, Eur. J. Pharm. Biopharm. 87(2), 290–298 (2014)

    Article  Google Scholar 

  • I. Behrens, P. Stenberg, P. Artursson, T. Kissel, Pharm. Res. 18(8), 1138–1145 (2001)

    Article  Google Scholar 

  • E. Berthier, E.W. Young, D. Beebe, Lab Chip 12(7), 1224–1237 (2012)

    Article  Google Scholar 

  • V. Bieghs, C. Trautwein, Hepatobiliary Surg Nutr. 3(6), 377–385 (2014)

    Google Scholar 

  • M.B. Chen, S. Srigunapalan, A.R. Wheeler, C.A. Simmons, Lab Chip 13(13), 2591–2598 (2013)

    Article  Google Scholar 

  • M. Chi, B. Yi, S. Oh, D.J. Park, J.H. Sung, S. Park, Biomed. Microdevices 17(3), 9966 (2015)

    Article  Google Scholar 

  • A. Choe, S.K. Ha, I. Choi, N. Choi, J.H. Sung, Biomed. Microdevices 19(1), 4 (2017)

    Article  Google Scholar 

  • C.M. Costello, J. Hongpeng, S. Shaffiey, J. Yu, N.K. Jain, D. Hackam, J.C. March, Biotechnol. Bioeng. 111(6), 1222–1232 (2014a)

    Article  Google Scholar 

  • C.M. Costello, R.M. Sorna, Y.L. Goh, I. Cengic, N.K. Jain, J.C. March, Mol. Pharm. 11(7), 2030–2039 (2014b)

    Article  Google Scholar 

  • L.G. van der Flier, H. Clevers, Annu. Rev. Physiol. 71, 241–260 (2009)

    Article  Google Scholar 

  • A. Galetin, J.B. Houston, J. Pharmacol. Exp. Ther. 318(3), 1220–1229 (2006)

    Article  Google Scholar 

  • D. Haller, P. Serrant, G. Peruisseau, C. Bode, W.P. Hammes, E. Schiffrin, S. Blum, Microbiol. Immunol. 46, 195–205 (2002)

    Article  Google Scholar 

  • X. He, D.O. Mishchuk, J. Shah, B.C. Weimer, C.M. Slupsky, Sci Rep. 33, 3416 (2013)

    Article  Google Scholar 

  • M.W. van der Helm, M. Odijk, J.P. Frimat, A.D. van der Meer, J.C. Eijkel, A. van den Berg, L.I. Segerink, Biosens. Bioelectron. 85, 924–929 (2016)

    Article  Google Scholar 

  • K. Hu, H. Shi, J. Zhu, D. Deng, G. Zhou, W. Zhang, Y. Cao, W. Liu, Biomed. Microdevices 12(4), 627–635 (2010)

    Article  Google Scholar 

  • D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Science 328 (2010)

  • J.D. Huizinga, W.J. Lammers, Am. J. Physiol. Gastrointest. Liver Physiol. 296(1), G1–G8 (2009)

    Article  Google Scholar 

  • E.L. Jackson, H. Lu, Integr Biol (Camb) 8(6), 672–683 (2016)

    Article  Google Scholar 

  • H.J. Kim, D.E. Ingber, Integr Biol (Camb) 5(9), 1130–1140 (2013)

    Article  Google Scholar 

  • H.J. Kim, D. Huh, G. Hamilton, D.E. Ingber, Lab Chip 12(12), 2156–2164 (2012)

    Article  Google Scholar 

  • S.H. Kim, J.W. Lee, I. Choi, Y.C. Kim, J.B. Lee, J.H. Sung, J. Nanosci. Nanotechnol. 13(11), 7220–7228 (2013)

    Article  Google Scholar 

  • S.H. Kim, M. Chi, B. Yi, S.H. Kim, S. Oh, Y. Kim, S. Park, J.H. Sung, Integr Biol (Camb) 6(6), 1222–1232 (2014)

    Google Scholar 

  • J. Kublbeck, J.J. Hakkarainen, A. Petsalo, K.S. Vellonen, A. Tolonen, P. Reponen, M.M. Forsberg, P. Honkakoski, J. Pharm. Sci. 105(2), 941–949 (2016)

    Article  Google Scholar 

  • J. Kuttenberger, E. Polska, B.M. Schaefer, Clin Oral Investig. 17(6), 1547–1555 (2013)

    Article  Google Scholar 

  • M. Leonard, E. Creed, D. Brayden, A.W. Baird, Pharm. Res. 17(10), 1181–1188 (2000)

    Article  Google Scholar 

  • F. Leonard, E.M. Collnot, C.M. Lehr, Mol. Pharm. 7(6), 2103–2119 (2010)

    Article  Google Scholar 

  • T. Li, J.Y. Chiang, Pharmacol. Rev. 66(4), 948–983 (2014)

    Article  Google Scholar 

  • J.H. Lin, M. Chiba, T.A. Baillie, Pharmacol. Rev. 51(2), 135–158 (1999)

    Google Scholar 

  • H.F. Lodish, Molecular cell biology (W.H. Freeman, New York, 2000)

    Google Scholar 

  • T.T. Nieskens, M.J. Wilmer, Eur. J. Pharmacol. 790, 46–56 (2016)

    Article  Google Scholar 

  • G. Noel, N.W. Baetz, J.F. Staab, M. Donowitz, O. Kovbasnjuk, M.F. Pasetti, N.C. Zachos, Sci Rep. 7, 45270 (2017)

    Article  Google Scholar 

  • K.S. Pang, Drug Metab. Dispos. 31(12), 1507–1519 (2003)

    Article  Google Scholar 

  • C. Piana, I. Gull, S. Gerbes, R. Gerdes, C. Mills, J. Samitier, M. Wirth, F. Gabor, Differentiation 75, 308–317 (2007)

    Article  Google Scholar 

  • J.M. Prot, C. Aninat, L. Griscom, F. Razan, C. Brochot, C.G. Guillouzo, C. Legallais, A. Corlu, E. Leclerc, Biotechnol. Bioeng. 108(7), 1704–1715 (2011)

    Article  Google Scholar 

  • J. Pusch, M. Votteler, S. Gohler, J. Engl, M. Hampel, H. Walles, K. Schenke-Layland, Biomaterials 32(30), 7469–7478 (2011)

    Article  Google Scholar 

  • E.M. Quigley, Gastroenterol Hepatol (NY) 9(9), 560–569 (2013)

    Google Scholar 

  • Q. Ramadan, L. Jing, Biomed. Microdevices 18(1), 11 (2016)

    Article  Google Scholar 

  • J. N. Rao, J. Y. Wang (2010). Regulation of Gastrointestinal Mucosal Growth. San Rafael (CA)

  • M. Rousset, Biochimie 68, 1035–1040 (1986)

    Article  Google Scholar 

  • M.T. Salmela, S.L. Pender, M.L. Karjalainen-Lindsberg, P. Puolakkainen, T.T. Macdonald, U. Saarialho-Kere, Scand. J. Gastroenterol. 39(11), 1095–1104 (2004)

    Article  Google Scholar 

  • J.H. Sung, J. Yu, D. Luo, M.L. Shuler, J.C. March, Lab Chip 11(3), 389–392 (2011)

    Article  Google Scholar 

  • J.H. Sung, M.B. Esch, J.M. Prot, C.J. Long, A. Smith, J.J. Hickman, M.L. Shuler, Lab Chip 13(7), 1201–1212 (2013)

    Article  Google Scholar 

  • N. Tobey, W. Heizer, R. Yeh, T.I. Huang, C. Hoffner, Gastroenterology 88(4), 913–926 (1985)

    Article  Google Scholar 

  • Y.S. Torisawa, C.S. Spina, T. Mammoto, A. Mammoto, J.C. Weaver, T. Tat, J.J. Collins, D.E. Ingber, Nat. Methods 11(6), 663–669 (2014)

    Article  Google Scholar 

  • G.J. Tortora, S.R. Grabowski, Principles of anatomy and physiology (HarperCollins College, New York, 1993)

    Google Scholar 

  • M.D. Troutman, D.R. Thakker, Pharm. Res. 20(8), 1200–1209 (2003)

    Article  Google Scholar 

  • V.J. Wacher, J.A. Silverman, Y. Zhang, L.Z. Benet, J. Pharm. Sci. 87(11), 1322–1330 (1998)

    Article  Google Scholar 

  • L. Wang, S.K. Murthy, G.A. Barabino, R.L. Carrier, Biomaterials 31(29), 7586–7598 (2010)

    Article  Google Scholar 

  • Y. Wang, A.A. Ahmad, C.E. Sims, S.T. Magness, N.L. Allbritton, Lab Chip 14(9), 1622–1631 (2014)

    Article  Google Scholar 

  • B.R. Ware, S.R. Khetani, Trends Biotechnol. 8(30), 19343–19352 (2016)

    Google Scholar 

  • J. Yu, S. Peng, D. Luo, J.C. March, Biotechnol. Bioeng. 109(9), 2173–2178 (2012)

    Article  Google Scholar 

  • R. Yumoto, T. Murakami, Y. Nakamoto, R. Hasegawa, J. Nagai, M. Takano, J. Pharmacol. Exp. Ther. 289(1), 149–155 (1999)

    Google Scholar 

  • R. Yumoto, T. Murakami, M. Sanemasa, R. Nasu, J. Nagai, M. Takano, Drug Metab. Dispos. 29(2), 145–151 (2001)

    Google Scholar 

  • Q.Y. Zhang, D. Dunbar, A. Ostrowska, S. Zeisloft, J. Yang, L.S. Kaminsky, Drug Metab. Dispos. 27(7), 804–809 (1999)

    Google Scholar 

  • Y. Zheng, J. Chen, M. Craven, N.W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J.A. Lopez, A.D. Stroock, Proc. Natl. Acad. Sci. U. S. A. 109(24), 9342–9347 (2012)

    Article  Google Scholar 

  • J. Zhou, L.E. Niklason, Integr Biol (Camb) 4(12), 1487–1497 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sungsu Park or Jong Hwan Sung.

Electronic supplementary material

ESM 1

(DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, KY., Lee, D., Han, J. et al. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed Microdevices 19, 37 (2017). https://doi.org/10.1007/s10544-017-0179-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0179-y

Keywords

Navigation