Skip to main content
Log in

Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Self-expandable medical devices provide mechanical functionality at a specific location of the human body and are viable for minimal invasive procedures. Besides radiopaque markers and drug-eluting coatings, next generation self-expandable devices can be equipped with additional functionality, such as conductive and flexible electrodes, which enables chronic recording of bioelectrical signals, stimulating or ablating tissue. This promises new therapeutic options in various medical fields, among them in particular neuromodulation (e.g. deep brain stimulation), BioMEMS, radio frequency ablation, mapping or denervation. However, the fabrication of such multi-functional devices is challenging. For this study we have realized a 35 μm thick, superelastic NiTi thin film stent structure with six isolated electrodes on the outer circumference, each electrode connected to a contact pad at the end of the stent structure, using magnetron sputtering, UV lithography and wet chemical etching. Mechanical and electrical properties of the device during typical loading conditions, i.e. crimping, simulated pulsatile and electrochemical testing, were characterized and reveal promising results. For the fabrication of future multifunctional, minimal invasive medical devices, such as electroceuticals or other intelligent implants, NiTi thin film technology is therefore a versatile alternative to conventional fabrication routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • C. Bechtold, R. Lima de Miranda, E. Quandt, Superelasticity. Shap. Mem. (2015). doi:10.1007/s40830-015-0029-9

    Google Scholar 

  • L.S. Castleman, S.M. Motzkin, F.P. Alicandri, V.L. Bonawit, A.A. Johnson, J. Biomed. Mater. Res. 10(5), 695 (1976)

    Article  Google Scholar 

  • M. Castro, A.S. Rubin, M. Laviolette, J. Fitermann, M. De Andrade Lima et al., Am. J. Respir. Crit. Care Med. 182, 2 116 (2010)

  • K.C. Cheung, P. Renaud, H. Tanila, K. Djupsund, Biosen. Bioelectron. 22(8), 1783 (2007)

    Article  Google Scholar 

  • J.W.C. de Vries, J. Phys. Met. Phys. 17, 1945 (1987)

    Article  Google Scholar 

  • T.W. Duerig, M. Wholey, Minim. Invasive Ther. Allied Tech. 11(4), 173 (2002)

  • H. Fischer, B. Vogel, A. Welle, Minim. Invasive Ther. Allied Tech. 13(4), 248 (2004)

    Article  Google Scholar 

  • L.A. Geddes, Annal. Biomed. Eng. 25(1), 14 (1997)

    Article  Google Scholar 

  • T. Habijan, R.L. De Miranda, C. Zamponi, E. Quandt, C. Greulich, T.A. Schildhauer, M. Köller, Mater. Sci. Eng. C 32(8), 2523 (2012)

    Article  Google Scholar 

  • C. Henle, M. Raab, J.G. Cordeiro, S. Doostkam, A. Schulze-Bonhage, T. Stieglitz, J. Rickert, Biomed. Microdevices 13(1), 59 (2011)

    Article  Google Scholar 

  • B.A. Hollenberg, C.D. Richards, R. Richards, D.F. Bahr, D.M. Rector, J. Neurosci. Meth. 153(1), 147 (2006)

    Article  Google Scholar 

  • B.-J. Kim, Y. Cho, M.-S. Jung, H.-A.-S. Shin, M.-W. Moon, H.N. Han, K.T. Nam, Y.-C. Joo, I.-S. Choi, Small 8(21), 3300 (2012)

    Article  Google Scholar 

  • B. Li, T. Steigauf, P. McIntyre, D. Sorensen, in Medical Device Materials V, Proceedings from the Materials & Processes for Medical Devices Conference 2009 (ASM International) p. 111

  • R. Lima de Miranda, C. Zamponi, E. Quandt, Adv. Eng. Mater. 15(1–2), 66 (2013)

    Article  Google Scholar 

  • R. Lima de Miranda, T. Scheuermann, PCT/EP2015/052026

  • T.J. Oxley, N.L. Opie, S.E. John, G.S. Rind, S.M. Ronayne et al., Nat. Biotechnol. 3428, 1 (2016)

  • B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, J. Neural Eng. 6, 036003 (2009)

    Article  Google Scholar 

  • J. Ryhänen, Minim. Invasiv. Ther. 9(2), 99–105 (2000)

  • M. Schuettler, Proc. IEEE EMBS. ThB08.6 (2007)

  • G. Siekmeyer, A. Schüßler, R. Lima de Miranda, E. Quandt, JMEPEG 23, 2437 (2014)

    Article  Google Scholar 

  • D. Stoeckel, Minim. Invasiv. Ther. 9(2), 81 (2000)

  • D. Stoeckel, A.R. Pelton, T.W. Duerig, in Shape Memory Alloys for Biomedical Applications, ed. by T. Yoneyama, S. Miyazaki (CRC Woodhead Publishing, 2009) pp. 237–256

  • A. Vanhoestenberghe, N. Donaldson, J. Neural Eng. 10, 031002 (2013)

    Article  Google Scholar 

  • M.E. Wechsler, M. Laviolette, A.S. Rubin, J. Fiterman, J.R. Lapa e Silva et al., J. Allerg. Clin. Immunol. 132(6), 1295 (2013)

  • M. Wohlschlögel, R. Lima de Miranda, A. Schüßler, E. Quandt, J. Biomed. Mater. Res. B. 104(6), 1176 (2016)

  • J.D. Yeager, D.J. Phillips, D.M. Rector, D.F. Bahr, J. Neurosci. Meth. 173(2), 279 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bechtold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechtold, C., de Miranda, R.L., Chluba, C. et al. Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation. Biomed Microdevices 18, 106 (2016). https://doi.org/10.1007/s10544-016-0131-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0131-6

Keywords

Navigation