Skip to main content
Log in

In–vivo characterization of left–ventricle pressure–volume telemetry system in swine model

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present in-vivo study related to the use of our implantable RF telemetry system for pressure-volume (PV) cardiac monitoring in a animal subject. We implant a commercial MEMS PV sensor into the subject’s heart left-ventricle (LV), while the telemetry system is implanted outside of the heart and connected to the sensor with a 7-microwires tether. The RF telemetry system is suitable for commercial application in medium sized subjects, its total volume of 2.475cm3 and a weight of 4.0g. Our designed system is 58 % smaller in volume, 44 % in weight and has a 55 % reduction in sampling power over the last reported research in PV telemetry. In-vivo data was captured in both an acute and a freely moving setting over a 24 hour period. We experimentally demonstrated viability of the methodology that includes the surgical procedure and real-time monitoring of the in-vivo data in a freely moving subject. Further improvements in catheter design will improve the data quality and safety of the subject. This real–time implantable technology allows for researchers to quantify cardiac pathologies by extracting real–time pressure-volume loops, wirelessly from within freely moving subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • J. Baan, E. Van Der Velde, H. De Bruin, G. Smeenk, J. Koops, A. Van Dijk, D. Temmerman, J. Senden, B. Buis, Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 70(5), 812–823 (1984)

    Article  Google Scholar 

  • P. Cong, W. Ko, D. Young, Wireless batteryless implantable blood pressure monitoring microsystem for small laboratory animals. IEEE Sens. J. 10(2), 243–254 (2010)

    Article  Google Scholar 

  • M. Feldman, P. Pak, C. Wu, H. Haber, C. Heesch, J. Bergin, E. Powers, T. Cowart, W. Johnson, A. Feldman, etal, Acute cardiovascular effects of opc-18790 in patients with congestive heart failure: time-and dose-dependence analysis based on pressure-volume relations. Circulation. 93(3), 474–483 (1996)

    Article  Google Scholar 

  • J. Francis, R. Weiss, S. Wei, A. Johnson, R. Felder, Progression of heart failure after myocardial infarction in the rat. American Journal of Physiology-Regulatory. Integr. Comp. Physiol. 281(5), R1734–R1745 (2001)

    Google Scholar 

  • K. Fricke, A. Dounavis, R. Sobot, Wireless Telemetry System for Implantable Cardiac Monitoring in Small Animal Subjects Using Pressure–Volume Sensors. in IEEE 11Th International NEWCAS 2013 Conference, June 16–19 2013, Paris, France, (2013)

  • K. Fricke, Z. Wang, R. Sobot, In-vitro rf characterization of implantable telemetry system. Analog Integr. Circ. Sig. Process. 81(3), 635–644 (2014)

    Article  Google Scholar 

  • K. Fricke, R. Sobot, C. Hodgson, Design and Evaluation of a 3D Printed Bio-Compatible Capsule for Implantable Telemetry Systems. in Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE, pp. 368–371. IEEE, (2014)

  • K. Fricke, M. Cai, R. Sobot, Cmos Voltage Regulator for Rf Energy Harvester. in IEEE 13Th International NEWCAS 2013 Conference, June 7–10 2015 (Grenoble, France, 2015)

  • K. Fricke, F. Konecny, A. El-Warrak, C. Hodgson, H. Cadieux-Pitre, T. Hill, R. Sobot, Real-Time Telemetric Physiologic Recordings of Ventricle Pressure-Volume in an Awake Swine Model with Histopathological Evaluation. in Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE. IEEE, (2015)

  • S. Gabriel, R. Lau, C. Gabriel, The dielectric properties of biological tissues: Ii. measurements in the frequency range 10 hz to 20 ghz. Phys. Med. Biol. 41, 2251 (1996)

  • Transonic Scisense Inc., Transonic scisense advantage adv500 pv control unit. http://www.transonic.com/product/adv500-pv-system/ (2016)

  • Transonic Scisense Inc., Why study cardiovascular pressure-volume relationships. http://www.transonic.com/resources/research/why-study-pv-loops/ (2013)

  • W. Ko, J. Hynecek, S. Boettcher, Implantable Pressure Transducer for Biomedical Applications. in 27Th Electronic Component Conf., Arlington, Virginia, May, Vol. 16, (1959)

  • M. Krenz, Conductance, admittance, and hypertonic saline: should we take ventricular volume measurements with a grain of salt? J. Appl. Physiol. 107(6), 1683–1684 (2009)

    Article  Google Scholar 

  • S. Kutty, A. T. Kottam, A. Padiyath, K. R. Bidasee, L. Li, S. Gao, J. Wu, J. Lof, D. A. Danford, T. Kuehne, Validation of admittance computed left ventricular volumes against real-time three-dimensional echocardiography in the porcine heart. Exp. Physiol. 98(6), 1092–1101 (2013)

    Article  Google Scholar 

  • E. Lankford, D. Kass, W. Maughan, A. Shoukas, Does volume catheter parallel conductance vary during a cardiac cycle? Am. J. Physiol. Heart Circ. Physiol. 258(6), H1933–H1942 (1990)

    Google Scholar 

  • K. Loeffler, J. E. Porterfield, E. R. Larson, D. Escobedo, G. P. Escobar, M. Feldman, J. Valvano, Embedded medical devices: Pressure volume loops in rodents. IEEE Potentials. 32(1), 18–22 (2013)

    Article  Google Scholar 

  • N. Neihart, R. Harrison, Micropower circuits for bidirectional wireless telemetry in neural recording applications. IEEE Trans. Biomed. Eng. 52(11), 1950–1959 (2005)

    Article  Google Scholar 

  • S. Popa, K. Fricke, A. Kottam, R. Sobot, Murine heart volume: Numerical comparison and calibration of conductance catheter models. IEEE Trans. Biomed. Eng. PP(99), 1–1 (2014). doi:10.1109/TBME.2014.2313621

  • K. Raghavan, J. E. Porterfield, A. T. Kottam, M. D. Feldman, D. Escobedo, J. W. Valvano, J. A. Pearce, Electrical conductivity and permittivity of murine myocardium. IEEE Trans. Biomed. Eng. 56(8), 2044–2053 (2009)

    Article  Google Scholar 

  • K. Raghavan, M. Feldman, J. Porterfield, E. Larson, J. Jenkins, D. Escobedo, J. Pearce, J. Valvano, A bio-telemetric device for measurement of left ventricular pressure–volume loops using the admittance technique in conscious, ambulatory rats. Physiol. Meas. 32, 701 (2011)

    Article  Google Scholar 

  • Y. C. Shih, T. Shen, B. P. Otis, A 2.3 μ w wireless intraocular pressure/temperature monitor. IEEE J. Solid State Circuits. 46(11), 2592–2601 (2011)

  • K. Uemura, T. Kawada, M. Sugimachi, C. Zheng, K. Kashihara, T. Sato, K. Sunagawa, A self-calibrating telemetry system for measurement of ventricular pressure-volume relations in conscious, freely moving rats. Am. J. Physiol. Heart Circ. Physiol. 287(6), H2906–H2913 (2004)

    Article  Google Scholar 

  • T. Volk, S. Gorbey, M. Bhattacharyya, W. Gruenwald, B. Lemmer, L. M. Reindl, T. Stieglitz, D. Jansen, Rfid technology for continuous monitoring of physiological signals in small animals. IEEE Trans. Biomed. Eng. 62(2), 618–626 (2015)

    Article  Google Scholar 

  • C. Wei, M. Shih, Calibration capacity of the conductance-to-volume conversion equations for the mouse conductance catheter measurement system. IEEE Trans. Biomed. Eng. 56(6), 1627–1634 (2009)

    Article  Google Scholar 

  • C. Wei, J. Valvano, M. Feldman, J. Pearce, Nonlinear conductance-volume relationship for murine conductance catheter measurement system. IEEE Trans. Biomed. Eng. 52(10), 1654–1661 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to Transonic Scisense Inc., NSERC, OCE, CFI and CMC Microsystems for supporting our research and for providing the design technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Fricke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fricke, K., Konecny, F., El-Warrak, A. et al. In–vivo characterization of left–ventricle pressure–volume telemetry system in swine model. Biomed Microdevices 18, 75 (2016). https://doi.org/10.1007/s10544-016-0094-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0094-7

Keywords

Navigation