Skip to main content
Log in

A simple microfluidic device to study cell-scale endothelial mechanotransduction

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Atherosclerosis is triggered by chronic inflammation of arterial endothelial cells (ECs). Because atherosclerosis develops preferentially in regions where blood flow is disturbed and where ECs have a cuboidal morphology, the interplay between EC shape and mechanotransduction events is of primary interest. In this work we present a simple microfluidic device to study relationships between cell shape and EC response to fluid shear stress. Adhesive micropatterns are used to non-invasively control EC elongation and orientation at both the monolayer and single cell levels. The micropatterned substrate is coupled to a microfluidic chamber that allows precise control of the flow field, high-resolution live-cell imaging during flow experiments, and in situ immunostaining. Using micro particle image velocimetry, we show that cells within the chamber alter the local flow field so that the shear stress on the cell surface is significantly higher than the wall shear stress in regions containing no cells. In response to flow, we observe the formation of lamellipodia in the downstream portion of the EC and cell retraction in the upstream portion. We quantify flow-induced calcium mobilization at the single cell level for cells cultured on unpatterned surfaces or on adhesive lines oriented either parallel or orthogonal to the flow. Finally, we demonstrate flow-induced intracellular calcium waves and show that the direction of propagation of these waves is determined by cell polarization rather than by the flow direction. The combined versatility and simplicity of this microfluidic device renders it very useful for studying relationships between EC shape and mechanosensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • F. An, Q. Yueyang, X. Liu, R. Zhong, Y. Luo, Organ-on-a-Chip: new platform for biological analysis. Anal. Chem. Insights. 10, 39–45 (2015)

  • D. E. J. Anderson, M. T. Hinds, Endothelial cell micropatterning: methods, effects, and applications. Ann. Biomed. Eng. 39(9), 2329–2345 (2011)

    Article  Google Scholar 

  • J. Ando, K. Yamamoto, Flow detection and calcium Signalling in vascular endothelial cells. Cardiovasc. Res. 99(2), 260–268 (2013)

    Article  Google Scholar 

  • A. Azioune, M. Storch, M. Bornens, M. Théry, M. Piel, Simple and rapid process for single cell micro-patterning. Lab Chip 9(11), 1640–1642 (2009)

    Article  Google Scholar 

  • A. Azioune, N. Carpi, Q. Tseng, M. Théry, M. Piel, Protein micropatterns: a direct printing protocol using deep UVs. Methods Cell Biol. 97, 133–146 (2010)

    Article  Google Scholar 

  • A. I. Barakat, Blood flow and arterial endothelial dysfunction: mechanisms and implications. C. R. Physique 14, 479–496 (2013)

    Article  Google Scholar 

  • K. A. Barbee, T. Mundel, R. Lal, P. F. Davies, Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am. J. Physiol. Heart Circ. Physiol. 268, H1765–H1772 (1995)

    Google Scholar 

  • D. J. Beebe, D. E. Ingber, J. Den Toonder, Organs on chips 2013. Lab. Chip. 13, 3447–3448 (2013)

    Article  Google Scholar 

  • J. M. Chan, K. H. K. Wong, A. M. Richards, C. L. Drum, Microengineering in cardiovascular research: new developments and translational applications. Cardiovasc. Res. 106, 9–18 (2015)

    Article  Google Scholar 

  • Y. S. Chatzizisis, A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, P. H. Stone, Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49(25), 2379–2393 (2007)

    Article  Google Scholar 

  • C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, D. E. Ingber, Geometric control of cell life and death. Science. 276(5317), 1425–1428 (1997)

    Article  Google Scholar 

  • S. Chien, Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292, 1209–1224 (2007)

    Article  Google Scholar 

  • P. F. Davies, Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75(3), 519–560 (1995)

    Google Scholar 

  • N. DePaola, P. F. Davies, W. F. Pritchard, L. Florez, N. Harbeck, D. C. Polacek, Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. 96, 3154–3159 (1999)

    Article  Google Scholar 

  • A. Eckstein, P. P. Vlachos, Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV). Meas. Sci. Technol. 20, 075402 (2009a)

    Article  Google Scholar 

  • A. Eckstein, P. P. Vlachos, Digital particle image velocimetry (DPIV) robust phase correlation. Meas. Sci. Technol. 20, 055401 (2009b)

    Article  Google Scholar 

  • A. Edelstein, N. Amodaj, K. Hoover, R. Vale, N. Stuurman, Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. Chapter 14, 14.20.1–14.20.17 (2010)

  • J. Fink, M. Théry, A. Azioune, R. Dupont, F. Chatelain, M. Bornens, M. Piel, Comparative study and improvement of current cell micro-patterning techniques. Lab. Chip. 7(6), 672–680 (2007)

    Article  Google Scholar 

  • E. Fröhlich, G. Bonstingl, A. Höfler, C. Meindl, G. Leitinger, T. R. Pieber, E. Roblegg, Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol. in Vitro. 27(1), 409–417 (2013)

  • C. L. M. Gouget, Y. Hwang, A. I. Barakat, Model of cellular mechanotransduction via actin stress fibers. Biomech. Model. Mechanobiol Springer Berlin Heidelberg 15, 331–344 (2015)

    Article  Google Scholar 

  • C. Hahn, M. A. Schwartz, Mechanotransduction in vascular physiology and Atherogenesis. Nat. Rev. Mol. Cell Biol. 10(1), 53–62 (2009)

    Article  Google Scholar 

  • S. Hsu, R. Thakar, D. Liepmann, S. Li, Effects of shear stress on endothelial cell Haptotaxis on micropatterned surfaces. Biochem. Biophys. Res. Commun. 337(1), 401–409 (2005)

    Article  Google Scholar 

  • R. H. W. Lam, Y. Sun, W. Chen, F. Jianping, Elastomeric Microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab. Chip. 12(10), 1865–1873 (2014)

    Article  Google Scholar 

  • M. J. Levesque, R. M. Nerem, The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107(4), 341–347 (1985)

    Article  Google Scholar 

  • Y.-S. J. Li, J. H. Haga, S. Chien, Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38(10), 1949–1971 (2005)

    Article  Google Scholar 

  • X. Lin, B. P. Helmke, Cell structure controls endothelial cell migration under fluid shear stress. Cell. Mol. Bioeng. 2(2), 231–243 (2012)

    Article  Google Scholar 

  • R. Lindken, M. Rossi, S. Grosse, J. Westerweel, Micro-particle image velocimetry (microPIV): recent developments, applications, and guidelines. Lab. Chip. 9(17), 2551–2567 (2009)

    Article  Google Scholar 

  • C. D. Meinhart, S. T. Wereley, J. G. Santiago, PIV measurements of a microchannel flow. Exp. Fluids 27, 414–419 (1999)

    Article  Google Scholar 

  • U. R. Michaelis, Mechanisms of endothelial cell migration. Cell. Mol. Life Sci. 71(21), 4131–4148 (2014)

    Article  Google Scholar 

  • J. T. Morgan, J. A. Wood, N. M. Shah, M. L. Hughbanks, P. Russell, A. I. Barakat, C. J. Murphy, Integration of Basal Topographic Cues and Apical Shear Stress in Vascular Endothelial Cells. Biomaterials. 33(16) Elsevier Ltd, 4126–4135 (2012)

    Article  Google Scholar 

  • R. G. Parton, M. A. del Pozo, Caveolae as Plasma Membrane Sensors, Protectors and Organizers. Nat. Rev. Mol. Cell. Biol. 14(2) Nature Publishing Group, 98–112 (2013)

  • W. J. Polacheck, R. Li, S. G. M. Uzel, R. D. Kamm, Microfluidic platforms for mechanobiology. Lab. Chip. 13(12), 2252–2267 (2013)

  • T. Richter, M. Floetenmeyer, C. Ferguson, J. Galea, J. Goh, M. R. Lindsay, G. P. Morgan, B. J. Marsh, R. G. Parton, High-resolution 3D quantitative analysis of caveolar ultrastructure and Caveola – cytoskeleton interactions. Traffic. 9(29), 893–909 (2008)

    Article  Google Scholar 

  • R. L. Satcher, S. R. Bussolari, M. A. Gimbrone, C. F. Dewey, The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. J. Biomech. Eng. 114, 309–316 (1992)

    Article  Google Scholar 

  • C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH image to ImageJ: 25 Years of image analysis. Nat. Methods. 9, 671–675 (2012)

    Article  Google Scholar 

  • J. Shemesh, I. Jalilian, A. Shi, G. H. Yeoh, T. M. L. Knothe, M. E. Warkiani, Flow-induced stress on adherent cells in microfluidic devices. Lab .Chip. Royal Society of Chemistry (2015). doi:10.1039/C5LC00633C

  • M. Théry, Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123(Pt 24), 4201–4213 (2010)

    Article  Google Scholar 

  • M. Théry, V. Racine, M. Piel, A. Pépin, A. Dimitrov, Y. Chen, J.-B. Sibarita, M. Bornens, Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. 103(52), 19771–19776 (2006)

    Article  Google Scholar 

  • L. Wang, Z.-L. Zhang, J. Wdzieczak-Bakala, D.-W. Pang, J. Liu, Y. Chen, Patterning cells and shear flow conditions: convenient observation of endothelial cell Remoulding, enhanced production of angiogenesis factors and drug response. Lab. Chip. 11(24), 4235–4240 (2011)

    Article  Google Scholar 

  • K. Yamamoto, K. Furuya, M. Nakamura, E. Kobatake, M. Sokabe, J. Ando, Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J. Cell Sci. 124(Pt 20), 3477–3483 (2011)

    Article  Google Scholar 

  • E. W. K. Young, C. A. Simmons, Macro- and microscale fluid flow Systems for Endothelial Cell Biology. Lab. Chip. 10(2), 143–160 (2010)

    Article  Google Scholar 

  • A. Yurdagul, A. C. Finney, M. D. Woolard, A. W. Orr, The arterial microenvironment: the where and why of atherosclerosis. Biochem. J. 473, 1281–1295 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Bertrand Levaché for introducing them to the double-sided tape microfabrication technique and Maria Isabella Gariboldi for her participation in micropatterning technique development. This work was supported in part by an endowment in cardiovascular cellular engineering from the AXA Research Fund. Julie Lafaurie-Janvore was funded by postdoctoral fellowships from the Fondation Lefoulon-Delalande and the AXA Research Fund. Elizabeth Antoine was funded by a Whitaker International Program postdoctoral fellowship. Sidney J. Perkins was supported by a summer research international student fellowship from École polytechnique and the Columbia University European Institute’s Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul I. Barakat.

Electronic Supplementary Material

ESM 1

(PDF 355 kb)

ESM 2

(AVI 21475 kb)

ESM 3

(AVI 19085 kb)

ESM 4

(AVI 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafaurie-Janvore, J., Antoine, E.E., Perkins, S.J. et al. A simple microfluidic device to study cell-scale endothelial mechanotransduction. Biomed Microdevices 18, 63 (2016). https://doi.org/10.1007/s10544-016-0090-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0090-y

Keywords

Navigation