Skip to main content

Advertisement

Log in

Parylene-on-oil packaging for long-term implantable pressure sensors

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper reports and analyzes the feasibility study of a parylene-on-oil encapsulation packaging method of pressure sensors targeted for long-term implantation. Commercial barometric digital-output pressure sensors are enclosed in silicone oil and then encapsulated in situ with parylene-C or –D (PA-C, PA-D) chemical vapor deposition. Experimentally, sensors encapsulated with 30,000 cSt silicone oil and 27 μm PA-D show good performance for 6 weeks in 77 °C saline with >99 % of original sensitivity, corresponding to an extrapolated lifetime of around 21 months in 37 °C saline. This work shows that, with proper designs, such a packaging method can preserve the original pressure sensor sensitivity without offset, validated throughout accelerated lifetime tests. In experiments, wires on the prototypes are used for external electronics but it is found that they contributed to early failures, which would be absent in real wireless versions, indicating a potential for even longer lifetimes. Finally, a verified model is presented to predict the pressure sensor sensitivity of parylene-on-oil packaging with and without the presence of a bubble in the oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • N. Binh-Khiem, K. Matsumoto, I. Shimoyama, Tensile film stress of parylene deposited on liquid, Langmuir. Am. Chem. Soc. 26(24), 18771–18775 (2010). doi:10.1021/la102790w

    Google Scholar 

  • N. Binh-Khiem, K. Matsumoto, I. Shimoyama, Porous parylene and effects of liquid on parylene films deposited on liquid. IEEE MEMS, 111–114 (2011). doi:10.1109/MEMSYS.2011.5734374

  • J. H. C. Chang, Wireless parylene-based retinal implant, Ph.D. Thesis, California Inst. of Tech. (2013)

  • J. H. C. Chang, Y. Liu, D. Kang, Y.-C. Tai, Reliable packaging for parylene-based flexible retinal implant. Digest Tech. Papers Transducers, 2612–2615 (2013). doi:10.1109/Transducers.2013.6627341

  • S. Choi, J. Hutchinson, A. Evans, Delamination of multilayer thermal barrier coatings. Mech. Mater. 31(7), 431–447 (1999)

    Article  Google Scholar 

  • I. Clausen, T. Glott, Development of clinically relevant implantable pressure sensors: perspectives and challenges. Sensors 14(9), 17686–17702 (2014). doi:10.3390/s140917686

    Article  Google Scholar 

  • P. Cong, W. H. Ko, D. J. Young, Wireless batteryless implantable blood pressure monitoring microsystem for small laboratory animals. IEEE Sensors J. 10(2), 243–254 (2010). doi:10.1109/JSEN.2009.2030982

    Article  Google Scholar 

  • W. F. Gorham, A new, general synthetic method for the preparation of linear poly-p-xylylenes, journal of polymer science part A-1: polymer chemistry, 4 3027–3039 (1966). doi:10.1002/pol.1966.150041209

    Google Scholar 

  • A. Homsy, E. Laux, L. Jeandupeux, J. Charmet, R. Bitterli, C. Botta, Y. Rebetez, O. Banakh, H. Keppner, Solid on liquid deposition, a review of technological solutions. Microelectronic Eng. 141, 267–279 (2015). doi:10.1016/j.mee.2015.03.068

    Article  Google Scholar 

  • L. Hsu, Development of a low-cost hemin-based dissolved oxygen sensor with anti-biofouling coating for water monitoring. IEEE Sensors J. 14(10), 3400–3407 (2014). doi:10.1109/JSEN.2014.2332513

    Article  Google Scholar 

  • G. Jiang and D. D. Zhou, in Implantable neural prostheses 2, ed. By D.D. Zhou and E. Greenbaum, Techniques and Engineering Approaches. (Springer Science & Business Media, LLC, 2010). p. 27–61 doi: 10.1007/978-0-387-98120-8_2

  • T. Kan, H. Aoki, N. Binh-Khiem, K. Matsumoto, I. Shimoyama, Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film. Sensors 13(4), 4138–4145 (2013). doi:10.3390/s130404138

    Article  Google Scholar 

  • H. Keppner, and M. Benkhaïra, Method for producing a plastic membrane device and the thus obtained device. WO/2006/063955 (2004)

  • A. Koutsonas, P. Walter, G. Roessler, N. Plange, Implantation of a novel telemetric intraocular pressure sensor with glaucoma (ARGOS study): 1-year results. Invest. Opthamol. Vis. Sci. 56(2), 1063–1069 (2015). doi:10.1167/iovs.14-14925

    Article  Google Scholar 

  • K. B. Liland, K. Eidnes, K. Bjorneklett, S. Hvisdten, Measurement of solubility and water content of insulating oils for HV XLPE cable terminations. IEEE Electrical Insulation (2008). doi:10.1109/ELINSL.2008.4570264

    Google Scholar 

  • B. Lutz, Z. Guan, L. Wang, F. Zhang, Z. Lü, Water absorption and water vapor permeation characteristics of HTV silicone rubber material. Electrical Insulation (ISEI) 478-482 (2012). doi:10.1109/ELINSL.2012.6251514

  • S. J. A. Majerus, P. C. Fletter, M. S. Damaser, S. L. Garverick, Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring. IEEE Trans. Biomedical Eng. 58(3), 763–767 (2011). doi:10.1109/ TBME.2010.2085002

    Article  Google Scholar 

  • B. Nguyen, E. Iwase, K. Matsumoto, I. Shomoyama, Electrically driven varifocal micro lens fabricated by depositing parylene directly on liquid. IEEE MEMS, 305–308 (2007). doi:10.1109/MEMSYS.2007.4433059

  • K. S. Pister, S. B. Dong, Elastic bending of layered plates. Proc ASCE J Eng Mech Div 84(1–10) (1959)

  • V. Quaglini, S. Mantero, T. Villa, Mechanical properties of breast periprosthetic capsule and the correlation to capsule contracture. J. of App. Biomat. & Biomech. 3(3), 184–191 (2005)

    Google Scholar 

  • S. Sankaranaravanan, S. Cular, V. Bhethanabotla, and B. Joseph, Subramanian flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. 77(6), 06683 (2008) doi:10.1103/PhysRevE.77.066308

  • W. K. Schombur, Introduction to microsystem design (Springer-Verlag, Berlin Heidelberg, 2011)

    Book  Google Scholar 

  • SCS Parylene Properties, (Specialty Coating Systems, 2007), http://www.physics.rutgers.edu/~podzorov/parylene%20properties.pdf. Accessed 9 Sept 2015

  • A. Shapero, Y. Liu, Y.-C. Tai, Parylene-on-oil packaging for implantable pressure sensors. IEEE MEMS, 403–406 (2016). doi:10.1109/MEMSYS .2016.7421646

  • Shin-Etsu Silicone, Silicone Fluid, KF-96, (performance test results, 2004), http://www.silicone.jp/e/. Accessed 1 Aug 2015

  • E. Ventsel, T. Krauthammer, Thin plates and shells, theory, analysis, and applications (Marcel Dekker, Inc, New York, 2001), pp. 231–232

    Book  Google Scholar 

  • P. Wang, S. J. A. Majerus, R. Karam, B. Hanzlicek, D. L. Lin, H. Zhu, J. M. Anderson, M. S. Damaser, C. A. Zorman, W. H. Ko, Long-term evaluation of a non-hermetic micropackage technology for MEMS-based, implantable pressure sensors. Digest Tech. Papers Transducers, 484–487 (2015). doi:10.1109/Transducers.2015.7180966

  • W. Wessel, Fluid pressure sensor, particularly diesel engine injection pump pressure sensor. US4430899 A (1984)

  • C. Xu, X. Hu, J. Wang, Y. M. Zhang, X. J. Liu, B. B. Xie, C. Yao, Y. Li, X. S. Li, Library of antifouling surfaces derived from natural amino acids by click reaction. ACS Appl. Mater. Interfaces 7(31), 17337–17345 (2015). doi:10.1021/acsami.5b04520

    Article  Google Scholar 

  • L. Yu, B. Kim, E. Meng, Chronically implanted pressure sensors: challenges and state of the field. Sensors 14(11), 20620–20644 (2014). doi:10.3390/s141120620

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Trevor Roper for his help on all the equipment at the Caltech MEMS Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aubrey M. Shapero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapero, A.M., Liu, Y. & Tai, YC. Parylene-on-oil packaging for long-term implantable pressure sensors. Biomed Microdevices 18, 66 (2016). https://doi.org/10.1007/s10544-016-0089-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0089-4

Keywords

Navigation