Skip to main content
Log in

An electromagnetic cell-stretching device for mechanotransduction studies of olfactory ensheathing cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Olfactory ensheathing cells (OECs) are primary candidates for cell transplantation therapy to repair spinal cord injury (SCI). However, the post transplantation survival of these cells remains a major hurdle for a success using this therapy. Mechanical stimuli may contribute to the maintenance of these cells and thus, mechanotransduction studies of OECs may serve as a key benefit to identify strategies for improvement in cell transplantation. We developed an electromagnetic cell stretching device based on a single sided uniaxial stretching approach to apply tensile strain to OECs in culture. This paper reports the design, simulation and characterisation of the stretching device with preliminary experimental observations of OECs in vitro. The strain field of the deformable membrane was investigated both experimentally and numerically. Heterogeneity of the device provided an ideal platform for establishing strain requirement for the OEC culture. The cell stretching system developed may serve as a tool in exploring the mechanobiology of OECs for future SCI transplantation research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • W.W. Ahmed, T. Wolfram, A.M. Goldyn, K. Bruellhoff, B.A. Rioja, M. Moller, J.P. Spatz, T.A. Saif, J. Groll, R. Kemkemer, Biomaterials 31(2), 250–258 (2010)

    Article  Google Scholar 

  • S.P. Arold, J.Y. Wong, B. Suki, Ann. Biomed. Eng. 35(7), 1156–1164 (2007)

    Article  Google Scholar 

  • R.P. Brandes, N. Weissmann, K. Schroder, Antioxid. Redox Signal. 20(6), 887–898 (2014)

    Article  Google Scholar 

  • Y. Cui, F. M. Hameed, B. Yang, K. Lee, C. Q. Pan, S. Park, M. Sheetz, Nat. Commun. 6 (2015)

  • S. Deguchi, S. Kudo, T.S. Matsui, W. Huang, M. Sato, AIP Adv. 5(6), 067110 (2015)

    Article  Google Scholar 

  • S. Dhein, A. Schreiber, S. Steinbach, D. Apel, A. Salameh, F. Schlegel, M. Kostelka, P.M. Dohmen, F.W. Mohr, Prog. Biophys. Mol. Biol. 115(2–3), 93–102 (2014)

    Article  Google Scholar 

  • C.C. DuFort, M.J. Paszek, V.M. Weaver, Nat. Rev. Mol. Cell Biol. 12(5), 308–319 (2011)

    Article  Google Scholar 

  • J.A. Ekberg, J.A. St John, Anat Rec (Hoboken) 297(1), 121–128 (2014)

    Article  Google Scholar 

  • J.A.K. Ekberg, J.A. St John, Neural Regen. Res. 10(9), 1395–1396 (2015)

    Article  Google Scholar 

  • J.A. Ekberg, D. Amaya, A. Mackay-Sim, J.A. St John, Neurosignals 20(3), 147–158 (2012)

    Article  Google Scholar 

  • I. Guido, C. Xiong, M.S. Jaeger, C. Duschl, Microelectron. Eng. 97, 379–382 (2012)

    Article  Google Scholar 

  • Z. He, R. Potter, X. Li, M. Flessner, Adv. Perit. Dial. 28, 2–9 (2012)

    Google Scholar 

  • S. Higgins, J.S. Lee, L. Ha, J.Y. Lim, Biores. Open Access 2(3), 212–216 (2013)

    Article  Google Scholar 

  • Y. Huang, N.T. Nguyen, Biomed. Microdevices 15(6), 1043–1054 (2013)

    Article  Google Scholar 

  • Z.H. Huang, Y. Wang, X.B. Yuan, C. He, Exp. Cell Res. 317(20), 2823–2834 (2011)

    Article  Google Scholar 

  • D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Science 328(5986), 1662–1668 (2010)

    Article  Google Scholar 

  • D.E. Ingber, Ann. Med. 35(8), 564–577 (2003)

    Article  Google Scholar 

  • Y. Iwadate, S. Yumura, Biotechniques 47(3), 757–767 (2009)

    Article  Google Scholar 

  • Y. Kamotani, T. Bersano-Begey, N. Kato, Y.C. Tung, D. Huh, J.W. Song, S. Takayama, Biomaterials 29(17), 2646–2655 (2008)

    Article  Google Scholar 

  • D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Science 333(6044), 838–843 (2011)

    Article  Google Scholar 

  • J.M. Mann, R.H. Lam, S. Weng, Y. Sun, J. Fu, Lab Chip 12(4), 731–740 (2012)

    Article  Google Scholar 

  • C. Moraes, J.H. Chen, Y. Sun, C.A. Simmons, Lab Chip 10(2), 227–234 (2010)

    Article  Google Scholar 

  • C. Neidlinger-Wilke, H.J. Wilke, L. Claes, J. Orthop. Res. 12(1), 70–78 (1994)

    Article  Google Scholar 

  • S. Nishimura, K. Seo, M. Nagasaki, Y. Hosoya, H. Yamashita, H. Fujita, R. Nagai, S. Sugiura, Prog. Biophys. Mol. Biol. 97(2-3), 282–297 (2008)

    Article  Google Scholar 

  • R.N. Palchesko, L. Zhang, Y. Sun, A.W. Feinberg, PLoS ONE 7(12), e51499 (2012)

    Article  Google Scholar 

  • K. Sato, S. Kamada, K. Minami, IJMS 52(2), 251–256 (2010)

    Google Scholar 

  • Y. Shao, X. Tan, R. Novitski, M. Muqaddam, P. List, L. Williamson, J. Fu, A.P. Liu, Rev. Sci. Instrum. 84(11), 114304 (2013)

    Article  Google Scholar 

  • F.H. Silver, L.M. Siperko, Crit. Rev. Biomed. Eng. 31(4), 255–331 (2003)

    Article  Google Scholar 

  • C.S. Simmons, J.Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, B.L. Pruitt, J. Micromech. Microeng. 21(5), 54016–54025 (2011)

    Article  Google Scholar 

  • N.J. Sniadecki, C.M. Lamb, Y. Liu, C.S. Chen, D.H. Reich, Rev. Sci. Instrum. 79(4), 044302 (2008)

    Article  Google Scholar 

  • Y.L. Sun, Z.P. Luo, A. Fertala, K.N. An, J. Biomech. 37(11), 1665–1669 (2004)

    Article  Google Scholar 

  • P. Tabakow, G. Raisman, W. Fortuna, M. Czyz, J. Huber, D. Li, P. Szewczyk, S. Okurowski, R. Miedzybrodzki, B. Czapiga, B. Salomon, A. Halon, Y. Li, J. Lipiec, A. Kulczyk, W. Jarmundowicz, Cell Transplant. 23(12), 1631–1655 (2014)

    Article  Google Scholar 

  • Y.H. Tan, D. Sun, J.Z. Wang, W.H. Huang, IEEE Trans. Biomed. Eng. 57(7), 1816–1825 (2010)

    Article  Google Scholar 

  • M. A. Teitell, S. Kalim, J. Schmit, J. Reed, Biomechanics of Single Cells and Cell Populations, ed. by D. Ho, (2010)

  • J. Tello Velasquez, M.E. Watts, M. Todorovic, L. Nazareth, E. Pastrana, J. Diaz-Nido, F. Lim, J.A. Ekberg, R.J. Quinn, J.A. St John, PLoS ONE 9(10), e111787 (2014)

    Article  Google Scholar 

  • J.H.C. Wang, B.P. Thampatty, Biomech. Model. Mechanobiol. 5(1), 1–16 (2006)

    Article  Google Scholar 

  • S. Wang, J. Lu, Y.A. Li, H. Zhou, W.F. Ni, X.L. Zhang, S.P. Zhu, B.B. Chen, H. Xu, X.Y. Wang, J. Xiao, H. Huang, Y.L. Chi, H.Z. Xu, Cell Transplant. 25(1), 141–157 (2016)

    Article  Google Scholar 

  • L.C. Windus, C. Claxton, C.L. Allen, B. Key, J.A. St John, Glia 55(16), 1708–1719 (2007)

    Article  Google Scholar 

  • L.C. Windus, F. Chehrehasa, K.E. Lineburg, C. Claxton, A. Mackay-Sim, B. Key, J.A. St John, Cell. Mol. Life Sci. 68(19), 3233–3247 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Perry Cross Spinal Research Foundation grant to JSJ and BioNano Health-Guard Research Center as Global Frontier Project (H-guard 2013M3A6B2078959) through National Research Foundation (NRF) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Trung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshad, K., Jun, M., Park, S. et al. An electromagnetic cell-stretching device for mechanotransduction studies of olfactory ensheathing cells. Biomed Microdevices 18, 45 (2016). https://doi.org/10.1007/s10544-016-0071-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0071-1

Keywords

Navigation