Skip to main content
Log in

A nanoliter self-priming compartmentalization chip for point-of-care digital PCR analysis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A nanoliter self-priming compartmentalization (SPC) microfluidic chip suited for the digital polymerase chain reaction (dPCR) analysis in point-of-care testing (POCT) has been developed. This dPCR chip is fabricated of polydimethylsiloxane (PDMS). After the dPCR chip is evacuated, there will be a negative pressure environment in the chip because of the gas solubility of PDMS. The negative pressure environment can provide a self-priming power so that the sample solutions can be sucked into each reaction chamber sequentially. The whole sampling process requires no external power and is valve-free. Channels that contain water are designed around each sample panel to prevent the solvent (water) from evaporating during dPCR process. A glass coverslip is also used as a waterproof layer, which is more convenient and more efficient than other waterproof methods seen in literature. This dPCR chip allows three samples to be amplified at the same time. Each sample is distributed into 1040 reaction chambers, and each chamber is only 2.08 nL. Human β-actin DNA solutions of known concentrations are used as the templates for the dPCR analyses to verify the sensitivity and accuracy of the method. Template DNA solutions diluted to concentrations of 300, 100 and 10 copies/μL are tested and shown that this simple, portable and self-priming dPCR chip can be used at any clinic as a real POCT technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • M. Baker, Nat. Methods 9, 541 (2012)

    Article  Google Scholar 

  • P.S. Bernard, C.T. Wittwer, Clin. Chem. 48, 1178 (2002)

    Google Scholar 

  • N. Blow, Nat. Methods 4, 869 (2007)

    Article  Google Scholar 

  • D.E. Cohen, T. Schneider, M. Wang, D.T. Chiu, Anal. Chem. 82, 5707 (2010)

    Article  Google Scholar 

  • A. Gansen, A.M. Herrick, I.K. Dimov, L.P. Lee, D.T. Chiu, Lab Chip 12, 2247 (2012)

    Article  Google Scholar 

  • C.A. Heid, J. Stevens, K.J. Livak, P.M. Williams, Genome Res. 6, 986 (1996)

    Article  Google Scholar 

  • K.A. Heyries, C. Tropini, M. VanInsberghe, C. Doolin, O.I. Petriv, A. Singhal, K. Leung, C.B. Hughesman, C.L. Hansen, Nat. Methods 8, 649 (2011)

    Article  Google Scholar 

  • B.J. Hindson, K.D. Ness, D.A. Masquelier, P. Belgrader, N.J. Heredia, A.J. Makarewicz, I.J. Bright, M.Y. Lucero, A.L. Hiddessen, T.C. Legler, T.K. Kitano, M.R. Hodel, J.F. Petersen, P.W. Wyatt, E.R. Steenblock, P.H. Shah, L.J. Bousse, C.B. Troup, J.C. Mellen, D.K. Wittmann, N.G. Erndt, T.H. Cauley, R.T. Koehler, A.P. So, S. Dube, K.A. Rose, L. Montesclaros, S. Wang, D.P. Stumbo, S.P. Hodges, S. Romine, F.P. Milanovich, H.E. White, J.F. Regan, G.A. Karlin-Neumann, C.M. Hindson, S. Saxonov, B.W. Colston, Anal. Chem. 83, 8604 (2011)

    Article  Google Scholar 

  • K. Hosokawa, K. Sato, N. Ichikawa, M. Maeda, Lab Chip 4, 181 (2004)

    Article  Google Scholar 

  • K. Hosokawa, M. Omata, K. Sato, M. Maeda, Lab Chip 6, 236 (2006)

    Article  Google Scholar 

  • K. Hosokawa, M. Omata, M. Maeda, Anal. Chem. 79, 6000 (2007)

    Article  Google Scholar 

  • Y.M.D. Lo, F.M.F. Lun, K.C.A. Chan, N.B.Y. Tsui, K.C. Chong, T.K. Lau, T.Y. Leung, B.C.Y. Zee, C.R. Cantor, R.W.K. Chiu, Proc. Natl. Acad. Sci. 104, 13116 (2007)

    Article  Google Scholar 

  • I.M. Mackay, Clin. Microbiol. Infect. 10, 190 (2004)

    Article  Google Scholar 

  • Y. Men, Y. Fu, Z. Chen, P.A. Sims, W.J. Greenleaf, Y. Huang, Anal. Chem. 84, 4262 (2012)

    Article  Google Scholar 

  • E.A. Ottesen, J.W. Hong, S.R. Quake, J.R. Leadbetter, Science 314, 1464 (2006)

    Article  Google Scholar 

  • D. Pekin, Y. Skhiri, J.-C. Baret, D.L. Corre, L. Mazutis, C.B. Salem, F. Millot, A.E. Harrak, J.B. Hutchison, J.W. Larson, D.R. Link, P. Laurent-Puig, A.D. Griffiths, V. Taly, Lab Chip 11, 2156 (2011)

    Article  Google Scholar 

  • J. Qin, R.C. Jones, R. Ramakrishnan, Nucleic Acids Res. 36, e116 (2008)

    Article  Google Scholar 

  • F. Shen, W. Du, J.E. Kreutz, A. Fok, R.F. Ismagilov, Lab Chip 10, 2666 (2010)

    Article  Google Scholar 

  • S.O. Sundberg, C.T. Wittwer, C. Gao, B.K. Gale, Anal. Chem. 82, 1546 (2010)

    Article  Google Scholar 

  • M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)

    Article  Google Scholar 

  • B. Vogelstein, K.W. Kinzler, Proc. Natl. Acad. Sci. 96, 9236 (1999)

    Article  Google Scholar 

  • R.A. White, P.C. Blainey, H.C. Fan, S.R. Quake, BMC Genomics 10, 116 (2009)

    Article  Google Scholar 

  • A.K. White, M. VanInsberghe, O.I. Petriv, M. Hamidi, D. Sikorski, M.A. Marra, J. Piret, S. Aparicio, C.L. Hansen, Proc. Natl. Acad. Sci. 108, 13999 (2011)

    Article  Google Scholar 

  • A.K. White, K.A. Heyries, C. Doolin, M. VanInsberghe, C.L. Hansen, Anal. Chem. 85, 7182 (2013)

    Article  Google Scholar 

  • H. Zhu, S. Mavandadi, A.F. Coskun, O. Yaglidere, A. Ozcan, Anal. Chem. 83, 6641 (2011)

    Article  Google Scholar 

  • Q. Zhu, Y. Gao, B. Yu, H. Ren, L. Qiu, S. Han, W. Jin, Q. Jin, Y. Mu, Lab Chip 12, 4755 (2012)

    Article  Google Scholar 

  • H. Zhu, I. Sencan, J. Wong, S. Dimitrov, D. Tseng, K. Nagashima, A. Ozcan, Lab Chip 13, 1282 (2013)

    Article  Google Scholar 

  • Q. Zhu, L. Qiu, B. Yu, Y. Xu, Y. Gao, T. Pan, Q. Tian, Q. Song, W. Jin, Q. Jin, Y. Mu, Lab Chip 14, 1176 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31270907), National Key Foundation for Exploring Scientific Instruments (2013YQ470781), China Postdoctoral Science Foundation (2014 M561749) and the State Key Laboratory of Industrial Control Technology, Zhejiang University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Mu or Qinhan Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Gao, Y., Zhu, Q. et al. A nanoliter self-priming compartmentalization chip for point-of-care digital PCR analysis. Biomed Microdevices 17, 64 (2015). https://doi.org/10.1007/s10544-015-9970-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9970-9

Keywords

Navigation