Skip to main content
Log in

Multi-electrode array capable of supporting precisely patterned hippocampal neuronal networks

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Accurate positioning of primary mouse hippocampal neurons on electrodes enables the recording from and stimulation of specified individual neurons on a multi-electrode array (MEA). In this work, positive dielectrophoresis (DEP) is applied to actively recruit hippocampal neurons to the electrodes of a MEA, whereas microstructures such as chambers and trenches are created to effectively define a patterned neuronal network. We present here the effective pretreatment methods, to improve cytocompatibility of cured thin SU-8 epoxy, commonly used in the fabrication of MEAs. The functionality of our novel MEA is proven by the successful recording of spontaneous and stimulated neuronal potentials from primary hippocampal neurons, including the propagation of evoked neuronal bursts between electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • D.J. Bakkum, U. Grey, M. Radivojevic, T.L. Russell, J. Muller, M. Fiscella, H. Takahashi, Nat. Commun. 4, 2181 (2013)

    Article  Google Scholar 

  • L. Berdondini et al., Sens. Actuators. B. Chem 114(1), 530–541 (2006)

    Article  Google Scholar 

  • L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep, S. Martinoia, Lab. Chip. 9(18), 2644–2651 (2009)

    Article  Google Scholar 

  • T.J. Blanche, M.A. Spacek, J.F. Hetke, N.V. Swindale, J. Neurophysiol. 93(5), 2987–3000 (2005)

    Article  Google Scholar 

  • B.H. Brown, Med. Biol. Eng. 6(5), 493–502 (1968)

    Article  Google Scholar 

  • S.H. Cho, H.M. Lu, L. Cauller, M.I. Romero-Ortega, J.B. Lee, G.A. Hughes, IEEE. Sens J 8(11), 1830–1836 (2008)

    Article  Google Scholar 

  • J. Erickson, A. Tooker, Y.C. Tai, J. Pine, J. Neurosci. Methods 175(1), 1–16 (2008)

    Article  Google Scholar 

  • D. Eytan, S. Marom, J. Neurosci. 26(33), 8465–8476 (2006)

    Article  Google Scholar 

  • U. Frey, U. Egert, F. Heer, S. Hafizovic, A. Hierlemann, Biosens. Bioelectron. 24(7), 2191–2198 (2009)

    Article  Google Scholar 

  • T. Gabay, E. Jakobs, E. Ben-Jakob, Y. Hanein, Physica. A 350(2–4), 611–621 (2005)

    Article  Google Scholar 

  • G. Gholmieh, W. Soussou, M. Han, A. Ahuja, M.C. Hsiao, D. Song, A.R. Tanguay Jr., T.W. Berger, J. Neurosci. Methods 152(1–2), 116–129 (2006)

    Article  Google Scholar 

  • M. Grattarola, S. Martinoia, IEEE. Trans. Biomed. Eng. 40(1), 35–41 (1993)

    Article  Google Scholar 

  • T. Heida, P. Vulto, W.L.C. Rutten, E. Marani, J. Neurosci. Methods 110(1–2), 37–44 (2001)

    Article  Google Scholar 

  • L.R. Hochberg et al., Nature 442, 164–171 (2006)

    Article  Google Scholar 

  • M. Hutzler, A. Lambacher, B. Eversmann, M. Jenkner, R. Thewes, P. Fromherz, J. Neurophysiol. 96(3), 1638–1645 (2006)

    Article  Google Scholar 

  • M.A.P. Idiart, L.F. Abbott, Network 4, 285–294 (1993)

    Article  MATH  Google Scholar 

  • F.T. Jaber, F.H. Labeed, M.P. Hughes, J. Neurosci. Methods 182(2), 225–235 (2009)

    Article  Google Scholar 

  • Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, H.P.C. Robinson, IEEE. Trans. Biomed. Eng. 50(2), 241–248 (2003)

    Article  Google Scholar 

  • G. Jing, A Multi-electrode Array (MEA) System for Patterned Neural Networks (Lehigh University, Bethlehem, 2009), pp. 167–178

    Google Scholar 

  • G. Jing, S.F. Perry, S. Tatic-Lucic, Biomed. Microdevices. 12(5), 935–948 (2010)

    Article  Google Scholar 

  • G. Jing, Y. Wang, T. Zhou, S.F. Perry, M.T. Grimes, S. Tatic-Lucic, Acta. Biomater. 7(3), 1094–1103 (2011)

    Article  Google Scholar 

  • T.B. Jones, Electromechanics of Particles (Cambridge University Press, New York, 1995), pp. 34–81

    Book  Google Scholar 

  • G. Liu, Y. Tian, Y. Kan, Microsyst. Technol. 11(4–5), 343–346 (2005)

    Article  Google Scholar 

  • J. Lu, C.C. Barrios, A.R. Dickson, J.L. Nourse, A.P. Lee, L.A. Flanagan, Integr. Biol. 4(10), 1223–1236 (2012)

    Article  Google Scholar 

  • M. Merz, P. Fromherz, Adv. Funct. Mater. 15(5), 739–744 (2005)

    Article  Google Scholar 

  • R. Miles, R.D. Traub, R.K. Wong, J. Neurophysiol. 60(4), 1481–1496 (1988)

    Google Scholar 

  • F.O. Morin, Y. Takamura, E. Tamiya, J. Biosci. Bioeng. 100(2), 131–143 (2005)

    Article  Google Scholar 

  • T. Ogura, T. Kubo, Y. Okuda, K. Lee, Y. Kira, S. Aramaki, F. Nakanishi, J. Orthop. Surg. 10(1), 67–71 (2002)

    Google Scholar 

  • L. Pan, S. Alagapan, E. Franca, G.J. Brewer, B.C. Wheeler, J. Neural Eng. 8(4), 046031 (2011)

    Article  Google Scholar 

  • J. Pine, J. Neurosci. Methods 2(1), 19–31 (1980)

    Article  Google Scholar 

  • H.A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, New York, 1978)

    Google Scholar 

  • S. Prasad, X. Zhang, M. Yang, Y. Ni, V. Parpura, C.S. Ozkan, M. Ozkan, J. Neurosci. Methods 135(1–2), 79–88 (2004)

    Article  Google Scholar 

  • J.T. Robinson, M. Jorgolli, A.K. Shalek, M.H. Yoon, R.S. Gertner, H. Park, Nat. Nanotech. 7(3), 180–184 (2012)

    Article  Google Scholar 

  • M.E. Spira, A. Hai, Nat. Nanotech. 8, 83–94 (2013)

    Article  Google Scholar 

  • J.L. Tan, W. Liu, C.M. Nelson, S. Raghavan, C.S. Chen, Tissue Eng. 10(5–6), 865–872 (2004)

    Article  Google Scholar 

  • S.L. Tao, K.C. Popat, J.J. Norman, T.A. Desai, Langmuir 24(6), 2631–2636 (2008)

    Article  Google Scholar 

  • A.M. Taylor, M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Nat. Methods 2(8), 599–605 (2005)

    Article  Google Scholar 

  • W. Tonomura, R. Kitazawa, T. Ueyama, H. Okamura, S. Konishi, Proc. IEEE Conf. Sensors, Daegu, Korea, 140–143 (2006) doi: 10.1109/ICSENS.2007.355738

  • V.N. Vernekar, D.K. Cullen, N. Fogleman, Y. Choi, A.J. Garcia, M.G. Allen, G.J. Brewer, M.C. LaPlaca, J. Biomed. Mater. Res. 89(1), 138–151 (2009)

    Google Scholar 

  • G. Voskerician, M.S. Shive, R.S. Shawgo, H. von Recum, J.M. Anderson, M.J. Cima, R. Langer, Biomater 24(11), 1959–1967 (2003)

    Article  Google Scholar 

  • D.A. Wagenaar, J. Pine, S.M. Potter, J. Neurosci. Methods 138(1–2), 27–37 (2004)

    Article  Google Scholar 

  • C. Xie, L. Hanson, W. Xie, Z. Lin, B. Cui, Y. Cui, Nano Lett. 10(10), 4020–4024 (2010)

    Article  Google Scholar 

  • G. Zeck, P. Fromherz, Proc. Natl. Acad. Sci. U. S. A. 98(18), 10457–10462 (2001)

    Article  Google Scholar 

  • H. Zhang, K.K. Liu, J. R. Soc. Interface 5(24), 671–690 (2008)

    Article  Google Scholar 

  • T. Zhou, S. Tatic-Lucic, Proc. IEEE Conf. Sensors, Taipei, Taiwan (2012) doi: 10.1109/ICSENS.2012.6411487

Download references

Acknowledgments

This work was partially funded by National Science Foundation (NSF) grant NSF ECCS-1321356 and a grant to Lehigh University from the Howard Hughes Medical Institute (HHMI) through the Precollege and Undergraduate Science Education Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyi Zhou or Svetlana Tatic-Lucic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Perry, S.F., Berdichevsky, Y. et al. Multi-electrode array capable of supporting precisely patterned hippocampal neuronal networks. Biomed Microdevices 17, 2 (2015). https://doi.org/10.1007/s10544-014-9907-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-014-9907-8

Keywords

Navigation