Skip to main content
Log in

Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A biocompatible polydimethylsiloxane (PDMS) biomicrofluidic platform is designed, fabricated and tested to study protuberance growth of single plant cells in a micro-vitro environment. The design consists of an inlet to introduce the cell suspension into the chip, three outlets to conduct the medium or cells out of the chip, a main distribution chamber and eight microchannels connected to the main chamber to guide the growth of tip growing plant cells. The test cells used here were pollen grains which produce cylindrical protrusions called pollen tubes. The goal was to adjust the design of the microfluidic network with the aim to enhance the uniformly distributed positioning of pollen grains at the entrances of the microchannels and to provide identical fluid flow conditions for growing pollen tubes along each microchannel. Computational fluid analysis and experimental testing were carried out to estimate the trapping efficiencies of the different designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • C.G. Agudelo, A. Sanati Nezhad, M. Ghanbari, M. Packirisamy, A. Geitmann, J. Micromech. Microeng. 22, 115009 (2012)

    Article  Google Scholar 

  • C.G. Agudelo, A. Sanati Nezhad, M. Ghanbari, M. Naghavi, M. Packirisamy, R.B. Bhat, A. Geitmann, Plant J. 73, 1057–1068 (2013)

    Article  Google Scholar 

  • H. Andersson, A.V. Berg, Sensors Actuators 92, 315–325 (2003)

    Article  Google Scholar 

  • F. Bou Daher, A. Geitmann, Traffic 12, 1537–1551 (2012)

    Article  Google Scholar 

  • J. Bove, B. Vaillancourt, J. Kroeger, P.K. Hepler, P.W. Wiseman, A. Geitmann, Plant Physiol. 147, 1646–1658 (2008)

    Article  Google Scholar 

  • F. Bragheri, L. Ferrara, N. Bellini, K.C. Vishnubhatla, P. Minzioni, R. Ramponi, R. Osellame, I. Cristiani, J. Biophoton. 3, 234–243 (2010)

    Article  Google Scholar 

  • T. Braschler, R. Johann, M. Heule, L. Metref, P. Renaud, Lab Chip 5, 553–559 (2005)

    Article  Google Scholar 

  • S. Burgarella, S. Merlo, B. Dell'Anna, G. Zarola, M. Bianchessi, Microelectron. Eng. 87, 2124–2133 (2010)

    Article  Google Scholar 

  • Y. Chebli, A. Geitmann, Funct. Plant Sci. Biotechnol. 1, 232–245 (2007)

    Google Scholar 

  • K.C. Cheung, P. Renaud, Solid State Electron. 50, 551–557 (2006)

    Article  Google Scholar 

  • J. Dinesh, in Proceedings of the COMSOL Conference, Bangalore, 2009

  • P. Fayant, O. Girlanda, Y. Chebli, C.E. Aubin, I. Villemure, A. Geitmann, Plant Cell Online 22, 2579–2593 (2010)

    Article  Google Scholar 

  • A. Geitmann, E. Parre, Sex Plant Reprod 17, 9–16 (2004)

    Article  Google Scholar 

  • I. Giouroudi, J. Kosel, C. Scheffer, Recent Patents Eng. 2, 114–121 (2008)

    Article  Google Scholar 

  • G. Grossmann, W.J. Guo, D.W. Ehrhardt, W.B. Frommer, R.V. Sit, S.R. Quake, M. Meier, Plant Cell Online 23, 4234–4240 (2011)

    Article  Google Scholar 

  • M.P. Hughes, H. Morgan, J. Phys. D. Appl. Phys. 31, 2205–2215 (1998)

    Article  Google Scholar 

  • R.S. Kanea, S. Takayamaa, E. Ostuni, D.E. Ingberb, G.M. Whitesides, Biomaterials 161, 1980–2004 (2007)

    Google Scholar 

  • M. Kendrick, D. McIntyre, O. Ostroverkhova, JOSA B 26, 2189–2198 (2009)

    Article  Google Scholar 

  • S. Kobel, A. Valero, J. Latt, P. Renaud, M. Lutolf, Lab Chip 10, 857–863 (2010)

    Article  Google Scholar 

  • J. Kroeger, A. Geitmann, Plant Signal. Behav. 6, 1828–1858 (2011a)

    Article  Google Scholar 

  • J. Kroeger, A. Geitmann, Mech. Res. Commun. 42, 32–39 (2011b)

    Article  Google Scholar 

  • J.H. Kroeger, A. Geitmann, M. Grant, J. Theor. Biol. 253, 363–374 (2008)

    Article  Google Scholar 

  • J.H. Kroeger, F.B. Daher, M. Grant, A. Geitmann, Biophys. J. 97, 1822–1831 (2009)

    Article  Google Scholar 

  • S.W. Lee, J.Y. Kang, I.H. Lee, S.S. Ryu, S.M. Kwak, K.S. Shin, C. Kim, H.I. Jung, T.S. Kim, Sensors Actuators A Phys. 143, 64–69 (2008)

    Article  Google Scholar 

  • B. Ma, V. Ruwet, P. Corieri, R. Theunissen, M. Riethmuller, C. Darquenne, J. Aerosol Sci. 40, 403–414 (2009)

    Article  Google Scholar 

  • A. Melling, Meas. Sci. Technol. 8, 1406 (1997)

    Article  Google Scholar 

  • M. Mrksich, C.S. Chen, Y. Xia, L.E. Dike, D.E. Ingber, G.M. Whitesides, Proc. Natl. Acad. Sci. 93, 10775–10778 (1996)

    Article  Google Scholar 

  • E. Nuxoll, R. Siegel, Eng. Med. Biol. Mag. IEEE 28, 31–39 (2009)

    Article  Google Scholar 

  • A. Sanati Nezhad, M. Ghanbari, C.G. Agudelo, M. Packirisamy, R.B. Bhat, A. Geitmann, IEEE Sensors 13, 601–609 (2013a)

    Article  Google Scholar 

  • A. Sanati Nezhad, M. Packirisamy, R.B. Bhat, A. Geitmann, Proc. Natl. Acad. Sci. 110, 8093–8098 (2013b)

    Article  Google Scholar 

  • A. Sanati Nezhad, M. Packirisamy, R.B. Bhat, A. Geitmann, Lab Chip 13, 2599–2608 (2013c)

    Article  Google Scholar 

  • A. Sanati Nezhad, M. Packirisamy, R.B. Bhat, A. Geitmann, Biomed. Eng. IEEE Trans. (2013d). doi:10.1109/TBME.2013.2270914

  • J. Seo, C. Ionescu-Zanetti, J. Diamond, R. Lal, L.P. Lee, Appl. Phys. Lett. 84, 1973–1978 (2004)

    Article  Google Scholar 

  • S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D.E. Ingber, G.M. Whitesides, Nature 411, 1016 (2001)

    Article  Google Scholar 

  • W. Tan, T.A. Desai, Tissue Eng. 9, 255–267 (2003)

    Article  Google Scholar 

  • W.H. Tan, S. Takeuchi, Proc. Natl. Acad. Sci. 104, 1146–1151 (2007)

    Article  Google Scholar 

  • H. Vogler, C. Draeger, A. Weber, D. Felekis, C. Eichenberger, A.L. Routier-Kierzkowska, A. Boisson-Dernier, C. Ringli, B.J. Nelson, R.S. Smith, U. Grossniklaus, Plant J. 73, 617–627 (2012)

    Article  Google Scholar 

  • A.R. Wheeler, W.R. Throndset, R.J. Whelan, A.M. Leach, R.N. Zare, Y.H. Liao, K. Farrell, I.D. Manger, A. Daridon, Anal. Chem. 75, 3581–3586 (2003)

    Article  Google Scholar 

  • M. Yang, C.W. Li, J. Yang, Anal. Chem. 74, 3991–4001 (2002)

    Article  Google Scholar 

  • K. Yasuda, Sensors Actuators B Chem. 64, 128–135 (2000)

    Article  Google Scholar 

  • R. Zerzour, J. Kroeger, A. Geitmann, Dev. Biol. 334, 437–446 (2009)

    Article  Google Scholar 

  • M. Zhang, L. Wang, K. Xiao, W. Wen, Lab Chip 10, 1199–1203 (2010)

    Article  Google Scholar 

  • B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145–172 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge research support from the Fonds de recherche du Québec - Nature et Technologies (FQRNT) and Concordia Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukumaran Packirisamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanati Nezhad, A., Ghanbari, M., Agudelo, C.G. et al. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis. Biomed Microdevices 16, 23–33 (2014). https://doi.org/10.1007/s10544-013-9802-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9802-8

Keywords

Navigation