Skip to main content
Log in

An optimized hollow microneedle for minimally invasive blood extraction

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The healthcare system relies widely on biochemical information obtained from blood sample extracted via hypodermic needles, despite the invasiveness and pain associated with this procedure. Therefore, an alternative micro-scale needle for minimally invasive blood sampling is highly desirable. Traditional fabrication techniques to create microneedles do not generate needles with the combined features of a sharp tip, long length, and hollow structure concurrently. Here, we report the fabrication of a microneedle long enough to reach blood vessels and sharp enough to minimize nerve contact for minimally invasive blood extraction. The microneedle structure was precisely controlled using a drawing lithography technique, and a sharp tip angle was introduced using a laser-cutting system. We investigated the characteristics of a microneedle with a length of 1,800 μm length, an inner diameter of 60 μm, a tip diameter of 120 μm, and a 15° bevel angle through in-vitro liquid extraction and mechanical strength analysis. We demonstrated that the proposed structure results in blood extraction at a reasonable rate, and that a microneedle with this geometry can reliably penetrate skin without breaking. We integrated this microneedle into a blood extraction device to extract a 20 μl volume of mouse blood in-vivo. Our optimized, hollow microneedle can potentially be incorporated with other cutting-edge technologies such as microactuators, biosensors, and microfluidic chips to create blood analysis systems for point-of-care diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • B.P. Chaudhri, F. Ceyssens, P.D. Moor, C.V. Hoof, R. Puers, J. Micromech. Microeng. 20, 064006 (2010)

    Article  Google Scholar 

  • S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, J. Biomech. 37, 1155 (2004)

    Article  Google Scholar 

  • P. Griss, G. Stemme, J. Microelectromech. Syst. 12, 296 (2003)

    Article  Google Scholar 

  • G.E. Gattiker, K.V.I.S. Kaler, M.P. Mintchev, Microsyst. Technol. 12, 44 (2005)

    Article  Google Scholar 

  • H.S. Gill, D. Denson, B. Burris, M.R. Prausnitz, Clin. J. Pain 24, 585 (2008)

    Article  Google Scholar 

  • M.D. Gilchrist, S. Keenan, M. Curtis, M. Cassidy, G. Byrne, M. Destrade, Forensic Sci. Int. 177, 52 (2008)

    Article  Google Scholar 

  • S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, J. Pharm. Sci. 87, 922 (1998)

    Article  Google Scholar 

  • Y. Haga, M. Esashi, Proc. IEEE 92, 98 (2004)

    Article  Google Scholar 

  • S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra, M.G. Allen, M.R. Prausnitz, Anesth. Analg. 92, 502 (2001)

    Article  Google Scholar 

  • K. Kim, D.S. Park, H.M. Lu, W. Che, K. Kim, J.B. Lee, C.H. Ahn, J. Micromech. Microeng. 14, 597 (2004)

    Article  Google Scholar 

  • S. Khumpuang, M. Horade, K. Fujioka, S. Sugiyama, Microsyst. Technol. 13, 209 (2007)

    Article  Google Scholar 

  • P. Khanna, K. Luongo, J.A. Strom, S. Bhansali, J. Micromech. Microeng. 20, 045011 (2010)

    Article  Google Scholar 

  • K. Lee, H.C. Lee, D.S. Lee, H. Jung, Adv. Mater. 22, 483 (2010)

    Article  Google Scholar 

  • C.G. Li, K. Lee, C.Y. Lee, M. Dangol, H. Jung, Adv. Mater. (2012). doi:10.1002/adma.201201109

  • V. Linder, Analyst 132, 1186 (2007)

    Article  Google Scholar 

  • R. McGrew, M. MeGrew, Encyclopedia of Medical History (McGraw Hill, New York, 1985)

    Google Scholar 

  • S.J. Moon, S.S. Lee, H.S. Lee, T.H. Kwon, Microsyst. Technol. 11, 311 (2005)

    Article  Google Scholar 

  • A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, Sensor. Actuator. B Chem. 130, 917 (2008)

    Article  Google Scholar 

  • V. Srinivasan, V.K. Pamula, R.B. Fair, Lab Chip 4, 310 (2004)

    Article  Google Scholar 

  • F. Sammoura, J.J. Kang, Y.M. Heo, T.S. Jung, L. Lin, Microsyst. Technol. 13, 517 (2007)

    Article  Google Scholar 

  • K. Tsuchiya, S. Jinnin, H. Yamamoto, Y. Uetsuji, E. Nakamachi, Precis. Eng. 34, 461 (2010)

    Google Scholar 

  • K. Tsuchiya, N. Nakanishi, Y. Uetsuji, E. Nakamachi, Biomed. Microdevices 7, 347 (2005)

    Article  Google Scholar 

  • K. Tsuchiya, K. Isobata, M. Sato, Y. Uetsuji, E. Nakamachi, K. Kajiwara, M. Kimura, in Proc. of SPIE, eds. by D.V. Nicolau, D. Abbott, K.K. Zadeh, T.D. Matteo, S.M. Bezrukov (SPIE, Bellingham, 2007), pp. 67990Q-1-67990Q-11

  • H.W. Vesper, P.M. Wang, E. Archiblod, M.R. Prausnitz, G.L. Myers, Diabetes Technol. Ther. 8, 76 (2006)

    Article  Google Scholar 

  • A.C. Williams, In Transdermal and topical drug delivery (Pharmaceutical Press, London, 2003), pp. 1–13

    Google Scholar 

  • P.M. Wang, M. Cornwell, M.R. Prausnitz, Diabetes Technol. Ther. 7, 131 (2005)

    Article  Google Scholar 

  • J. Wang, Chem. Rev. 108, 814 (2008)

    Article  Google Scholar 

  • M.Y. Yousif, D.W. Holdsworth, T.L. Poepping, Exp. Fluid. 50, 769 (2011)

    Article  Google Scholar 

  • R. Zhou, H.C. Chang, J. Colloid Interface Sci. 287, 647 (2005)

    Article  Google Scholar 

  • P. Zhang, C. Dalton, G.A. Jullien, Microsyst. Technol. 15, 1073 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in equal part by the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0020772), and by a grant from the Korean Health Technology R&D Project, Ministry for Health, Welfare, Republic of Korea (A102003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungil Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C.G., Lee, C.Y., Lee, K. et al. An optimized hollow microneedle for minimally invasive blood extraction. Biomed Microdevices 15, 17–25 (2013). https://doi.org/10.1007/s10544-012-9683-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9683-2

Keywords

Navigation