Skip to main content
Log in

Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents an ultra-thin and flexible polymer-based capacitive pressure sensor for intraocular pressure (IOP) monitoring in a mouse eye. Due to the size limitation of the anterior chamber in the mouse eye, a volume of approximately 700 × 700 × 150 μm3 on a small substrate is available for the MEMS capacitive pressure sensor. Moreover, the sensor would ideally be easily injectable into place. Further complicating the sensing is the need to operate the device on the curved surface of the anterior chamber with minimum damage to the eye tissue. Therefore, a thin and flexible substrate is required. We fabricate sensors by exploiting Parylene as a biocompatible structural material in a suitable form factor and 25 μm thick liquid crystal polymer (LCP) as a soft and flexible host substrate. Using our approach, the flexibility and small form factor necessary for a mouse eye implant is achieved, along with the sensitivity required to monitor IOP fluctuations. This device will allow better study of glaucoma through close monitoring in mice after integration with other components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Y. Barkana, S. Anis, J. Liebmann, C. Tello, R. Ritch, Arch. Opththalmol. 124, 793–797 (2006)

    Article  Google Scholar 

  • M.W. Charles, N. Brown, Phys. Med. Biol. 20(2), 202–218 (1975)

    Article  Google Scholar 

  • P.-J. Chen, D.C. Rodger, S. Saati, M.S. Humayun, Y.-C. Tai, J. Microelectromech, Syst. 17, 1342–1351 (2008)

    Google Scholar 

  • P.-J. Chen, S. Saati, R. Varma, M.S. Humayun, Y.-C. Tai, J. Microelectromech, Syst. 19, 721–734 (2010)

    Google Scholar 

  • E.Y. Chow, A.L. Chlebowski, P.P. Irazoqui, IEEE Trans. Biomed. Circuit Syst. 4(6), 340–349 (2010a)

    Article  Google Scholar 

  • E.Y. Chow, D. Ha, T. Lin, W.N. De Vries, S.W.M. John, W.J. Chappell, P.P. Irazoqui, Proceedings of the IEEE Engineering in Medicine and Biology Conference. (Buenos Aires, Argentina, August 31–September 4, 2010), pp. 6429–6432

  • R. Dean, J. Weller, M. Bozack, B. Farrell, L. Jauniskis, J. Ting, D. Edell, J. Hetke, J. Microelectron, Electron. Packag. 4(1), 17–22 (2007)

    Google Scholar 

  • R. Dean, J. Weller, M. Bozack, B. Farrell, L. Jauniskis, J. Ting, D. Edell, J. Hetke, Proc. SPIE Int. Symp. Opt. Sci. Technol. (Denver, Colorado USA, August 2–6, 2004), pp. 88–99

  • R. Dean, J. Weller, M. Bozack, C. Rodekohr, B. Farrell, L. Jauniskis, J. Ting, D. Edell, J. Hetke, IEEE Trans. Comp. Packag. Tech. 31(2), 315–321 (2008)

    Article  Google Scholar 

  • G. Fragiacomo, T. Ansbaek, T. Pedersen, O. Hansen, E.V. Thomsen, Sens. Actuators A 161, 114–119 (2010)

    Article  Google Scholar 

  • J. Han, M.A. Shannon, IEEE Sensors J. 9, 199–206 (2009)

    Article  Google Scholar 

  • T.A. Harder, T. Yao, Q. He, C. Shih, Y.C. Tai, Micro Electro Mechanical Systems (Las Vegas, Nevada USA, January 20–24, 2002), pp. 435–438

  • Helmholtz Zentrum München Research Institute, Mouse eye image, http://www.helmholtz-muenchen.de/en/ieg/gmc/research/technologies/eye.html. Accessed 1 March 2011

  • G.R. Howell, R.T. Libby, J.K. Marchant, L.A. Wilson, I.M. Cosma1, R.S. Smith1, M.G. Anderson, S.W.M. John, BMC Genetics (2007) doi:10.1186/1471-2156-8-45

  • A. Hughes, Vision Res. 12, 123–138 (1972)

    Article  Google Scholar 

  • G. Jiang, Frontier in Neuroscience 4, 1–4 (2010)

    Google Scholar 

  • S.W.M. John, M.G. Anderson, R.S. Smith, J. Glaucoma 8, 400–412 (1999)

    Article  Google Scholar 

  • S.W.M. John, J.R. Hagaman, T.E. MacTaggart, L. Peng, O. Smithesf, Invest Ophthalmol. Vis. Sci. 38, 249–253 (1997)

    Google Scholar 

  • S.W.M. John, R.S. Smith, O.V. Savinova, N.L. Hawes, B. Chang, D. Turnbull, M. Davisson, T.H. Roderick, J.R. Heckenlively, Invest. Opthamol. Vis. Sci. 39, 951–962 (1998)

    Google Scholar 

  • K.C. Katuri, S. Ansrani, M.K. Ramasubramanian, IEEE Sensors J. 8, 12–19 (2008)

    Article  Google Scholar 

  • H. Kim, K. Najafi, J. Microelectromech, Syst. 16, 1386–1396 (2007)

    Google Scholar 

  • J. Lee, K. Hwang, K. Yoon, T. Kim, S. Ahn, IEEE Trans. Plasma Science 32(2), 505–509 (2004)

    Article  Google Scholar 

  • R.T. Libby, Y. Li, O.V. Savinova, J. Barter, R.S. Smith, R.W. Nickells, S.W.M. John, PLoS Genet. 1, 17–26 (2005)

    Article  Google Scholar 

  • T. Lin, D. Ha, W.N. DeVries, B. Kim, A.L. Chlebowski, S.W.M. John, P.P. Irazoqui, W.J. Chappell, IEEE MTT-S Int. Microwave Symp. (Baltimore, Maryland USA, June 7–9, 2011), pp 1–4

  • P.G. Mcmenamin, R.J. Steptoe, J. Anat. 178, 65–77 (1991)

    Google Scholar 

  • E. Meng, Y.-C. Tai, Micro Electro Mechanical Systems (Miami, Florida USA, January 30-February 3, 2005), pp 568–571

  • MicroFab Bremen, Capacitive pressure sensor E1.3N datasheet, http://www.microfab.de/downloads/20080109datasheete1.3na4.pdf, Accessed 1 September 2008

  • H.-S. Noh, Y. Huang, P.J. Hesketh, Sens. Actuators B 102, 78–85 (2004)

    Article  Google Scholar 

  • J.N. Palasagaram, R. Ramadoss, IEEE Sensors J. 6, 1374–1375 (2006)

    Article  Google Scholar 

  • Prevent Blindness America, National Eye Institute, Vision problems in the U.S. http://www.preventblindness.net/site/DocServer/CDD_Vision_Report.pdf, Accessed 1 September 2008

  • R. Schellin et al., Measurement of the mechanical behavior of micromachined silicon and silicon-nitride membranes for microphones, pressure sensors and gas flow meters. Sens. Actuators A 41, 287–292 (1994)

    Article  Google Scholar 

  • S. Timoshenko, S. Woinowsky-Krieger, Theory of Plate and Shells, 2nd edn. (McGraw-Hill, New York, 1959), pp. 54–55

    Google Scholar 

  • X. Wang, L. Lu, C. Liu, J. Micromech, Microeng. 13, 628–633 (2003)

    Article  Google Scholar 

  • J. Yoon, C. Han, E. Yoon, C. Kim, SPIE Conference on Material and Device characterization in Micromachining (Santa Clara, California USA, 1998), pp. 316–325

    Google Scholar 

  • D.J. Young, J. Du, C.A. Zorman, W.H. Ko, IEEE Sensors J. 4, 464–470 (2004)

    Article  Google Scholar 

  • D. Ziegler, T. Suzuki, S. Takeuchi, J. Microelectromech, Syst. 15, 1477–1482 (2006)

    Google Scholar 

Download references

Acknowledgement

This work is funded by a Collaborative Innovation Award from the Howard Hughes Medical Institute (HHMI). The authors also wish to acknowledge the technical assistance of Special Coating System (SCS). SWMJ is an Investigator of the HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dohyuk Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, D., de Vries, W.N., John, S.W.M. et al. Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye. Biomed Microdevices 14, 207–215 (2012). https://doi.org/10.1007/s10544-011-9598-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9598-3

Keywords

Navigation