Skip to main content
Log in

Microfluidic particle sorting utilizing inertial lift force

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A simple passive microfluidic device that continuously separates microparticles is presented. Its development is motivated by the need for specific size micro perfluorocarbon (PFC) droplets to be used for a novel gas embolotherapy method. The device consists of a rectangular channel in which inertial lift forces are utilized to separate particles in lateral distance. At the entrance of the channel, particles are introduced at the center by focusing the flow from a center channel with flow from two side channels. Downstream, large particles will occupy a lateral equilibrium position in shorter axial distance than small particles. At the exit of the channel, flow containing large particles is separated from flow containing small particles. It is shown that 10.2-μm diameter microspheres can be separated from 3.0-μm diameter microspheres with a separation efficiency of 69–78% and a throughput in the order of 2 ·104 particles per minute. Computational Fluid Dynamics (CFD) calculations were done to calculate flow fields and verify theoretical particle trajectories. Theory underlying this research shows that higher separation efficiencies for very specific diameter cut-off are possible. This microfluidic channel design has a simple structure and can operate without external forces which makes it feasible for lab-on-a-chip (LOC) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • D.R. Absolom, C.J. van Oss et al., Biochem. Biophys. Acta 670(1), 74–78 (1981)

    Google Scholar 

  • G.K. Batchelor, Introduction to Fluid Dynamics (Cambridge University Press, 1967)

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Microfluid Nanofluid (2008a). doi:10.1007/s10404-008-0377-2

    MATH  Google Scholar 

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Lab. Chip 8, 1906–1914 (2008b)

    Article  Google Scholar 

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Phys. Fluids 20, 101702 (2008c)

    Article  Google Scholar 

  • H. Bruus, Theoretical Microfluidics (Oxford University Press, 2007)

  • J. Bull, Crit. Rev. Biomed. Eng. 33(4), 299–346 (2005)

    Article  Google Scholar 

  • J. Bull, in APS Division of Fluid Dynamics, 55th Annual Meeting (2002)

  • J. Bull, A.J. Calderon et al., in APS Division of Fluid Dynamics, 59th Annual Meeting (2006)

  • A.J. Calderon, Y.S. Heo, J.B. Fowlkes, J. Bull et al., Appl. Phys. Lett. 89, 244103 (2006)

    Article  Google Scholar 

  • B. Chun, A.J.C. Ladd, Phys. Fluids 18, 031704 (2006)

    Article  Google Scholar 

  • D. Di Carlo, D. Irimia, R.G. Tompkins et al., PNAS 104, 18892–18897 (2007)

    Article  Google Scholar 

  • D. Di Carlo, J.F. Edd, D. Irimia et al., Anal. Chem. 80, 2204–2211 (2008)

    Article  Google Scholar 

  • D. Di Carlo, J.F. Edd, K.J. Humphry et al., Phys. Rev. Lett. 102, 094503 (2009)

    Article  Google Scholar 

  • F. Durst, S. Ray et al., J. Fluids Eng. 127, 1154–1160 (2005)

    Article  Google Scholar 

  • D.M. Eckmann, M.A. Swartz, Matthew et al., Artif. Cells Blood Substit. Immobil. Biotechnol. 26(3), 259–271 (1998)

    Article  Google Scholar 

  • J.C. Giddings, Sep. Sci. Technol. 20, 749–768 (1985)

    Article  Google Scholar 

  • J.C. Giddings, F.J. Yang et al., Science 193, 1244–1245 (1976)

    Article  Google Scholar 

  • B.P. Ho, L.G. Leal, J. Fluid Mech. 65(2), 365–400 (1974)

    Article  MATH  Google Scholar 

  • D. Huh, J.H. Bahng, Y. Ling et al., Anal. Chem. 74(4), 1369–1376 (2007)

    Article  Google Scholar 

  • M.K. Inglesby, S.H. Zeronian, Dyes Pigm. 50, 3–11 (2001)

    Article  Google Scholar 

  • O.D. Kripfgans, J.B. Fowlkes et al., Ultrasound Med. Biol. 7, 1177–1189 (2000a)

    Article  Google Scholar 

  • O.D. Kripfgans, J.B. Fowlkes et al., in Proceedings of the 2000 IEEE International Ultrasonics Symposium PM-5 (2000b)

  • S.S. Kuntaegowdanahalli, A.A.S. Bhagat, G. Kumar, I. Papautsky, Lab Chip (2009). doi:10.1039/b908271a

    Google Scholar 

  • T. Leakakos, E.G. Schutt, J.C. Cavin et al., Artif. Cells Blood Substit. Immobil. Biotechnol. 22(4), 1199–1204 (1994)

    Article  Google Scholar 

  • C. Lin, C. Lee, C. Tsai, L. Fu, Microfluid Nanofluid (2009). doi:10.1007/s10404-009-0403-z

    Google Scholar 

  • F.T.M. Nieuwstadt, in Notes and Exercises Accompanying the Lecture Series Advanced Fluid Mechanics b56a (Delft University Press, 1995)

  • J. Park, S. Song, H. Jung, Lab Chip 9, 939–948 (2009)

    Article  Google Scholar 

  • A. Russom, A.K. Gupta, S. Nagrath, D. Di Carlo et al., New J. Phys. 11, 075025 (2009)

    Article  Google Scholar 

  • J.A. Schonberg, E.J. Hinch, J. Fluid Mech. 203, 517–524 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • E. Sollier, H. Rostainga, P. Pouteaua et al., Sens. Actuators, B, Chem. 141, 617–624 (2009)

    Article  Google Scholar 

  • T. Ye, J. Bull, J. Biomed. Eng. 128, 554–563 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant RO1 EB006476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Bull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieuwstadt, H.A., Seda, R., Li, D.S. et al. Microfluidic particle sorting utilizing inertial lift force. Biomed Microdevices 13, 97–105 (2011). https://doi.org/10.1007/s10544-010-9474-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9474-6

Keywords

Navigation