Skip to main content

Advertisement

Log in

Versatile methods for the fabrication of polyvinylidene fluoride microstructures

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF) microstructures are of interest for a number of BioMEMS applications both for their piezoelectric and biocompatible properties. In this work, simple soft lithography-based techniques were developed to fabricate PVDF microstructures with diverse geometries, including microarrays of pillars, lines, and wells. Four different microstructure configurations were created: freestanding, stamped discontinuous, stamped continuous and imprinted patterns. Features with lateral dimensions down to 1 μm were consistently reproduced on 2.5 cm diameter areas. Atomic force microscopy (AFM) measurements of poled PVDF microstructures confirmed a marked inverse piezoelectric behavior. The techniques presented here have a number of advantages over previously demonstrated PVDF micropatterning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • R. Bashir, Adv Drug Deliv Rev 56, 1565–1586 (2004)

    Article  Google Scholar 

  • E. Bormashenko, R. Pogreb, Y. Socol, M.H. Itzhaq, V. Streltsov, S. Sutovski, A. Sheshnev, Y. Bormashenko, Opt Mater 27, 429–434 (2004)

    Article  Google Scholar 

  • Q.X. Chen, P.A. Payne, Meas Sci Technol 6, 249–267 (1995)

    Article  Google Scholar 

  • W.J. Choi, Y. Jeon, J.H. Jeong, R. Sood, S.G. Kim, J Electroceram 17, 543–548 (2006)

    Article  Google Scholar 

  • Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, Q. He, N. Balke, C.H. Yang, D. Lee, W. Hu, Q. Zhan, P.L. Yang, A. Fraile-Rodriguez, A. Scholl, S.X. Wang, R. Ramesh, Nat Mater 7, 478–482 (2008)

    Article  Google Scholar 

  • G.V. Cochran, M.W. Johnson, M.P. Kadaba, F. Vosburgh, M.W. Ferguson-Pell, V.R. Palmieri, J Orthop Res 3, 508–513 (1985)

    Article  Google Scholar 

  • A. Dubach, R. Raghavan, J. Löffler, J.J. Michler, U. Ramamurty, Scr Mater 60, 567–570 (2009)

    Article  Google Scholar 

  • N. Ferrell, J. Woodard, D. Hansford, Biomed Microdevices 9, 815–821 (2007)

    Article  Google Scholar 

  • M.T. Frey, I.Y. Tsai, T.P. Russell, S.K. Hanks, Y.L. Wang, Biophys J 90, 3774–3782 (2006)

    Article  Google Scholar 

  • D. Gallego, N. Ferrell, Y. Sun, D.J. Hansford, Mater Sci Eng C Biomim Mater Sens Syst 28, 353–358 (2008)

    Google Scholar 

  • M. Ghibaudo, L. Trichet, J.L. Digabel, A. Richert, P. Hersen, B. Ladoux, Biophys J 97, 357–368 (2009)

    Article  Google Scholar 

  • M. Goel, Curr Sci 85, 443–453 (2003)

    Google Scholar 

  • M.L.K. Hoa, M. Lu, Y. Zhang, Adv Colloid Interface Sci 121, 9–23 (2006)

    Article  Google Scholar 

  • Z.J. Hu, G. Baralia, V. Bayot, J.F. Gohy, A.M. Jonas, Nano Lett 5, 1738–1743 (2005)

    Article  Google Scholar 

  • Z.J. Hu, M.W. Tian, B. Nysten, A.M. Jonas, Nat Mater 8, 62–67 (2009)

    Article  Google Scholar 

  • C.H. Hung, Y.L. Lin, T.H. Young, Biomaterials 27, 4461–4469 (2006)

    Article  Google Scholar 

  • J. Iqbal, M. Zaidi, Biochem Biophys Res Commun 328, 751–755 (2005)

    Article  Google Scholar 

  • D. Ivanov, BioDrugs 20, 351–356 (2006)

    Article  Google Scholar 

  • K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, W. Boda, Sens Actuators A Phys 12, 156–161 (2005)

    Google Scholar 

  • S.J. Kang, Y.J. Park, J. Hwang, H.J. Jeong, J.S. Lee, K.J. Kim, H.C. Kim, J. Huh, C. Park, Adv Mater 19, 581–586 (2007)

    Article  Google Scholar 

  • H. Kawai, Jpn J Appl Phys 8, 975–976 (1969)

    Article  Google Scholar 

  • A. Khademhosseini, R. Langer, J. Borestein, J.P. Vacanti, Proc Natl Acad Sci USA 103, 2480–2487 (2006)

    Article  Google Scholar 

  • D. Klee, Z. Ademovic, A. Bosserhoff, H. Hoecker, G. Maziolis, H.-J. Erli, Biomaterials 24, 3663–3670 (2003)

    Article  Google Scholar 

  • U. Klinge, B. Klosterhalfen, A.P. Ottinger, K. Junge, V. Schumpelick, Biomaterials 23, 3487–3493 (2002)

    Article  Google Scholar 

  • J.B. Lando, W.W. Doll, J Macromol Sci Phys B 2, 205–218 (1968)

    Article  Google Scholar 

  • S.B. Lang, S. Muensit, Appl Phys A 85, 125–134 (2006)

    Article  Google Scholar 

  • S. Lee, E.V. Bordatchev, M.J.F. Zeman, J Micromech Microeng 18, 045011 (2008)

    Article  Google Scholar 

  • D. Li, D.A. Bonnell, Annu Rev Mater Res 38, 351–368 (2008)

    Article  Google Scholar 

  • J.Y. Li, R.C. Rogan, E. Ustundag, K. Bhattacharya, Nat Mater 4, 776–781 (2005)

    Article  Google Scholar 

  • Y. Liu, D.N. Weiss, J. Li, ACS Nano 4, 83–90 (2010)

    Article  Google Scholar 

  • O. Loh, A. Vaziri, H.D. Espinosa, Exp Mech 49, 105–124 (2009)

    Article  Google Scholar 

  • N.B. Narayanan, A. Bonakdar, J. Dargahi, M. Packirisamy, R. Bhat, Smart Mater Struct 15, 1684–1690 (2006)

    Article  Google Scholar 

  • A. Navarro, S.A. Rocks, R.A. Dorey, J Electroceram 19, 321–326 (2007)

    Article  Google Scholar 

  • H. Ohigashi, J Appl Phys 47, 949–955 (1976)

    Article  Google Scholar 

  • S. Ozeri, D. Shmilovitz, J. Fainguelernt, Ind Electron 2006 IEEE Int Symp 4, 2840–2845 (2006)

  • Y.J. Park, Y.S. Kang, C. Park, Eur Polym J 41(5), 1002–1012 (2005)

    Article  Google Scholar 

  • J.F. Scott, M. Dawber, A.Q. Jiang, F.D. Morrison, Ferroelectrics 286, 945–957 (2003)

    Article  Google Scholar 

  • D.B. Serrell, J. Law, A.J. Slifka, L. Mahajan, D.S. Finch, Biomed Microdevices 10, 883–889 (2008)

    Article  Google Scholar 

  • K.G. Sharp, G.S. Blackman, N.J. Glassmaker, A. Jagota, C. Hui, Langmuir 20, 6430–6438 (2004)

    Article  Google Scholar 

  • Y. Shen, U.C. Wejinya, N. Xi, C.A. Pomeroy, Proc IMechE 221, 99–112 (2007)

    Article  Google Scholar 

  • J.W. Sohn, S.B. Choi, D.Y. Lee, Proc IMechE 219, 429–436 (2005)

    Article  Google Scholar 

  • S.M. Spearing, Acta Mater 48, 179–196 (2000)

    Article  Google Scholar 

  • K. Tashiro, H. Tadokoro, M. Kobayashi, Ferroelectrics 32, 167–175 (1981)

    Article  Google Scholar 

  • E. Urban, M.W. King, R. Guidoin, G. Laroche, Y. Marois, L. Martin, A. Cardou, Y. Douville, ASAIO J 40, 145–156 (1994)

    Google Scholar 

  • A. Wada, H. Kubota, H. Hatanaka, H. Miura, Y. Iwamoto, J Hand Surg [Br] 26, 212–216 (2001)

    Google Scholar 

  • F. Wang, M. Tanaka, S. Chonan, J Intell Mater Syst Struct 14, 185–190 (2003)

    Article  Google Scholar 

  • Y. Xia, G.M. Whitesides, Annu Rev Mater Sci 28, 153–184 (1998)

    Article  Google Scholar 

  • B. Xu, F. Arias, G.M. Whitesides, Adv Mater 11, 492–495 (1999a)

    Article  Google Scholar 

  • B. Xu, F. Arias, S.T. Brittain, X.M. Zhao, B. Grzybowski, S. Torquato, G.M. Whitesides, Adv Mater 11, 1186–1189 (1999b)

    Article  Google Scholar 

  • J. Xu, M.J. Dapino, D. Gallego-Perez, D. Hansford, Sens Actuators A Phys 153, 24–32 (2009)

    Article  Google Scholar 

  • H. Zhang, D.W. Hutmacher, F. Chollet, A.N. Poo, E. Burdet, Macromol Biosci 5, 477–489 (2005)

    Article  Google Scholar 

  • L. Zhang, S. Ducharme, J. Li, Appl Phys Lett 91, 172906 (2007)

    Article  Google Scholar 

  • W. Zhou, Y. Huang, E. Menard, N.R. Aluru, J.A. Rogers, A.G. Alleyne, Appl Phys Lett 87, 251925 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Edward Meier, Jian Xu and Dr. Marcelo Dapino (The Ohio State University) for helpful discussion, and the Nanotech West Laboratory staff for technical assistance. This work was funded by AFOSR MURI contract # F49620-03-1-0421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek J. Hansford.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(a) Setup used for patterning/transferring PVDF microstructures using heat and pressure, (b) Close-up showing a patterned PVDF film being transferred from the PDMS mold onto a conductive substrate. (DOCX 1755 kb)

Supplementary Figure 2

(a) PDMS stamp being peeled away from the patterned PVDF film, (b) PVA layer being lifted out of the PDMS mold (carrying the PVDF microstructures), (c) PVDF microstructures stamped on a rigid substrate (left), flexible substrate (middle), and on the PVA layer (right). Inset shows a SEM micrograph of a freestanding PVDF microstructure recovered by filtering the dissolved PVA layer. (DOCX 2135 kb)

Supplementary Figure 3

(a) Poling and (b) actuation setups (inset in (a) shows a close-up of the sample with the connections made to the power supply). (DOCX 2056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego-Perez, D., Ferrell, N.J., Higuita-Castro, N. et al. Versatile methods for the fabrication of polyvinylidene fluoride microstructures. Biomed Microdevices 12, 1009–1017 (2010). https://doi.org/10.1007/s10544-010-9455-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9455-9

Keywords

Navigation