Skip to main content
Log in

Growth of primary embryo cells in a microculture system

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present optimal perfusion conditions for the growth of primary mouse embryonic fibroblasts (mEFs) and mouse embryonic stem cells (mESCs) using a microfluidic perfusion culture system. In an effort to balance nutrient renewal while ensuring the presence of cell secreted factors, we found that the optimal perfusion rate for culturing primary embryonic fibroblasts (mEFs) in our experimental setting is 10 nL/min with an average flow velocity 0.55 μm/s in the microchannel. Primary mEFs may have a greater dependence on cell secreted factors when compared to their immortalized counterpart 3T3 fibroblasts cultured under similar conditions. Both the seeding density and the perfusion rate are critical for the proliferation of primary cells. A week long cultivation of mEFs and mESCs using the microculture system exhibited similar morphology and viability to those grown in a petri dish. Both mEFs and mESCs were analyzed using fluorescence immunoassays to determine their proliferative status and protein expression. Our results demonstrate that a perfusion-based microculture environment is capable of supporting the highly proliferative status of pluripotent embryonic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • K.R. Atkuri, L.A. Herzenberg, A.-K. Niemi, T. Cowan, L.A. Herzenberg, Importance of culturing primary lymphocytes at physiological oxygen levels. Proc. Natl. Acad. Sci. 104(11), 4547–4552 (2007)

    Article  Google Scholar 

  • S. Avery, K. Inniss, H. Moore, The regulation of self-renewal in human embryonic stem cells. Stem Cells Dev. 15(5), 729–740 (2006)

    Article  Google Scholar 

  • S.C. Bendall et al., IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 448, 1015–1021 (2007)

    Article  Google Scholar 

  • M.R. Bennett et al., Metabolic gene regulation in a dynamically changing environment. Nature. 454, 1119–1122 (2008)

    Article  Google Scholar 

  • M.F. Brown, T.P. Gratton, J.A. Stuart, Metabolic rate does not scale with body mass in cultured mammalian cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R2115–R2121 (2007)

    Google Scholar 

  • B.G. Chung et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip. 5, 401–406 (2005)

    Article  Google Scholar 

  • J.T. Dimos et al., Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 321, 1218–1221 (2008)

    Article  Google Scholar 

  • L. Edelstein-Keshet, Mathematical models in biology (SIAM, New York, 2005)

    MATH  Google Scholar 

  • J. El-Ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature. 442, 403–411 (2006)

    Article  Google Scholar 

  • E. Fuchs, T. Tumbar, G. Guasch, Socializing with the neighbors: stem cells and their niches. Cell. 116, 769–778 (2004)

    Article  Google Scholar 

  • R. Gómez-Sjöberg, A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake, Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79, 8557–8563 (2007)

    Article  Google Scholar 

  • L. Hayflick, P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585–621 (1961)

    Article  Google Scholar 

  • C.T. Jordan, Cancer stem cell biology: from leukemia to solid tumors. Curr. Opin. Cell Biol. 16(6), 708–712 (2004)

    Article  Google Scholar 

  • L. Kim, Y.-C. Toh, J. Voldman, H. Yu, A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip. 7, 681–694 (2007)

    Article  Google Scholar 

  • L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip. 6, 394–406 (2006)

    Article  Google Scholar 

  • N. Korin, A. Bransky, U. Dinnar, S. Levenberg, A parametric study of human fibroblasts culture in a microchannel bioreactor. Lab Chip. 7, 611–617 (2007)

    Article  Google Scholar 

  • M.E. Levenstein et al., Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells. 24, 568–574 (2006)

    Article  Google Scholar 

  • N. Li, A. Tourovskaia, A. Folch, Biology on a chip: microfabrication for studying the behavior of cultured cells. Crit. Rev. Biomed. Eng. 31, 423–488 (2003)

    Article  Google Scholar 

  • W.E. Lowry, K. Plath, The many ways to make an iPS cell. Nat. Biotechnol. 26, 1246–1248 (2008)

    Article  Google Scholar 

  • J.C. McDonald, G.M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35(7), 491–499 (2002)

    Article  Google Scholar 

  • T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Polym. Sci. B Polym. Phys. 38, 415–434 (2000)

    Article  Google Scholar 

  • L.J. Millet, M.E. Stewart, J.V. Sweedler, R.G. Nuzzo, M.U. Gillette, Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip. 7, 987–994 (2007)

    Article  Google Scholar 

  • C.E. Murry, G. Keller, Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 132, 661–680 (2008)

    Article  Google Scholar 

  • C.P. Ng, M.A. Swartz, Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am. J. Physiol. Heart Circ. Physiol. 284(5), 1171–1777 (2003)

    Google Scholar 

  • R.L. Panton, Incompressible flow (Wiley, New York, 1996)

    Google Scholar 

  • I.H. Park et al., Disease-specific induced pluripotent stem cells. Cell. 134, 877–886 (2008)

    Article  Google Scholar 

  • R.F. Probstein, Physicochemical hydrodynamics (Wiley, New York, 1994)

    Book  Google Scholar 

  • V.K. Ramiya et al., Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6(3), 278–282 (2000)

    Article  Google Scholar 

  • A. Rosenthal, A. Macdonald, J. Voldman, Cell patterning chip for controlling the stem cell microenvironment. Biomaterials. 28(21), 3208–3216 (2007)

    Article  Google Scholar 

  • K. Schuster-Gossler et al., Use of coisogenic host blastocysts for efficient establishment of germline chimeras with C57BL/6J ES cell lines. Biotechniques. 31(5), 1022–1026 (2001)

    Google Scholar 

  • Y. Takagi et al., Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest. 115(1), 102–109 (2005)

    Google Scholar 

  • K. Takahashi, K. Okita, M. Nakagawa, S. Yamanaka, Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols. 2(12), 3081–3089 (2007a)

    Article  Google Scholar 

  • K. Takahashi et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861–872 (2007b)

    Article  Google Scholar 

  • A.M. Taylor et al., A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods. 2(8), 599–605 (2005)

    Article  Google Scholar 

  • J.A. Thomson et al., Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145–1147 (1998)

    Article  Google Scholar 

  • G.J. Todaro, H. Green, Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963)

    Article  Google Scholar 

  • Y.-C. Toh et al., A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip. 7, 302–309 (2007)

    Article  Google Scholar 

  • A. Tourovskaia, X. Figueroa-Masot, A. Folch, Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation. Nature Protocols. 1(3), 1092–1104 (2006)

    Article  Google Scholar 

  • F. Watt, B.L.M. Hogan, Out of Eden: stem cells and their niches. Science. 287, 1427–1430 (2000)

    Article  Google Scholar 

  • G.M. Whitesides, The origins and the future of microfluidics. Nature. 44, 368–373 (2006)

    Article  Google Scholar 

  • G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E. Ingber, Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001)

    Article  Google Scholar 

  • H. Yu, I. Meyvantsson, I.A. Shkel, D.J. Beebe, Diffusion dependent cell behavior in microenvironments. Lab Chip. 5, 1089–1095 (2005)

    Article  Google Scholar 

  • J. Yu et al., Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917–1920 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the State of Connecticut under the Connecticut Stem Cell Research Initiative (Grant 06SCA05). M. Villa and S. Pope thank the UConn-Wesleyan Stem Cell Core for embryonic stem cell culture training.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Hsi Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villa, M., Pope, S., Conover, J. et al. Growth of primary embryo cells in a microculture system. Biomed Microdevices 12, 253–261 (2010). https://doi.org/10.1007/s10544-009-9380-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9380-y

Keywords

Navigation