Skip to main content
Log in

Sample preparation module for bacterial lysis and isolation of DNA from human urine

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Silica impregnated polymer monolithic columns may provide a simple method for lysing and extracting DNA from bacteria inside of microfluidic chips. Here we use Escherichia coli as a test organism for a point of care thermoplastic microfluidic module designed to take in a urine sample, mix it with lysis buffer, and perform a hybrid chemical/mechanical lysis and solid phase extraction of nucleic acids from the sample. To demonstrate proof-of-concept, we doped human hematuric urine samples with E. coli at concentrations ranging from 101–105 colony-forming units/mL (CFU/mL) to simulate patient samples. We then performed on-chip lysis and DNA extraction. The bacterial DNA was amplified using real-time PCR demonstrating lysis and isolation down to 101 CFU/mL. Results were comparable to a commercial kit at higher concentrations and performed better at recovering DNA at lower concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • E. Arroyo, E.K. Wheeler, R. Shediac, B. Hindson, S. Nasarabadi, G. Vrankovich, P. Bell, C. Bailey, T. Sheppod, A.T. Christian, Flow through pcr module of biobriefcase. Smart Medical and Biomedical Sensor Technology III, Proceedings of the SPIE, Vol. 6007, Proceedings of the SPIE (2005)

  • P. Belgrader, D. Hansford, G.T. Kovacs, K. Venkateswaran, R. Mariella Jr., F. Milanovich, S. Nasarabadi, M. Okuzumi, F. Pourahmadi, M.A. Northrup, A minisonicator to rapidly disrupt bacterial spores for DNA analysis Anal. Chem. 71(19), 4232–4236 (1999). doi:10.1021/ac990347o

    Article  Google Scholar 

  • S. Bent, B.K. Nallamothu, D.L. Simel, S.D. Fihn, S. Saint, Does this woman have an acute uncomplicated urinary tract infection? JAMA 287(20), 2701–2710 (2002). doi:10.1001/jama.287.20.2701

    Article  Google Scholar 

  • A. Bhattacharyya, C.M. Klapperich, Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics Anal. Chem. 78(3), 788–792 (2006). doi:10.1021/ac051449j

    Article  Google Scholar 

  • R. Boom, C.J. Sol, M.M. Salimans, C.L. Jansen, P.M. Wertheim-van Dillen, J. van der Noordaa, Rapid and simple method for purification of nucleic acids J. Clin. Microbiol. 28(3), 495–503 (1990)

    Google Scholar 

  • M.C. Breadmore, S. Shrinivasan, K.A. Wolfe, M.E. Power, J.P. Ferrance, B. Hosticka, P.M. Norris, J.P. Landers, Towards a microchip-based chromatographic platform. Part 1: Evaluation of sol-gel phases for capillary electrochromatography Electrophoresis 23(20), 3487–3495 (2002). doi:10.1002/1522-2683(200210)23:20<3487::AID-ELPS3487>3.0.CO;2-5

    Article  Google Scholar 

  • M.C. Breadmore, K.A. Wolfe, I.G. Arcibal, W.K. Leung, D. Dickson, B.C. Giordano, M.E. Power, J.P. Ferrance, S.H. Feldman, P.M. Norris, J.P. Landers, Microchip-based purification of DNA from biological samples Anal. Chem. 75(8), 1880–1886 (2003). doi:10.1021/ac0204855

    Article  Google Scholar 

  • P.D. Brown, A. Freeman, B. Foxman, Prevalence and predictors of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli isolates in Michigan Clin. Infect. Dis. 34(8), 1061–1066 (2002). doi:10.1086/339491

    Article  Google Scholar 

  • X.W. Chen, Z.R. Xu, B.Y. Qu, Y.F. Wu, J. Zhou, H.D. Zhang, J. Fang, J.H. Wang, DNA purification on a lab-on-valve system incorporating a renewable microcolumn with in situ monitoring by laser-induced fluorescence Anal. Bioanal. Chem. 388(1), 157–163 (2007). doi:10.1007/s00216-007-1196-0

    Article  Google Scholar 

  • D. Di Carlo, K.H. Jeong, L.P. Lee, Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation Lab Chip 3(4), 287–291 (2003). doi:10.1039/b305162e

    Article  Google Scholar 

  • D. Di Carlo, C. Ionescu-Zanetti, Y. Zhang, P. Hung, L.P. Lee, On-chip cell lysis by local hydroxide generation Lab Chip 5(2), 171–178 (2005). doi:10.1039/b413139h

    Article  Google Scholar 

  • C.J. Easley, J.M. Karlinsey, J.M. Bienvenue, L.A. Legendre, M.G. Roper, S.H. Feldman, M.A. Hughes, E.L. Hewlett, T.J. Merkel, J.P. Ferrance, J.P. Landers, A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability Proc. Natl. Acad. Sci. U S A 103(51), 19272–19277 (2006). doi:10.1073/pnas.0604663103

    Article  Google Scholar 

  • B. Foxman, B. Gillespie, J. Koopman, L. Zhang, K. Palin, P. Tallman, J.V. Marsh, S. Spear, J.D. Sobel, M.J. Marty, C.F. Marrs, Risk factors for second urinary tract infection among college women Am. J. Epidemiol. 151(12), 1194–1205 (2000)

    Google Scholar 

  • M. Franz, W.H. Horl, Common errors in diagnosis and management of urinary tract infection. I: Pathophysiology and diagnostic techniques Nephrol. Dial. Transplant. 14(11), 2746–2753 (1999). doi:10.1093/ndt/14.11.2746

    Article  Google Scholar 

  • C.A. Gaydos, M. Theodore, N. Dalesio, B.J. Wood, T.C. Quinn, Comparison of three nucleic acid amplification tests for detection of chlamydia trachomatis in urine specimens J. Clin. Microbiol. 42(7), 3041–3045 (2004). doi:10.1128/JCM.42.7.3041-3045.2004

    Article  Google Scholar 

  • K. Gupta, T.M. Hooton, W.E. Stamm, Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections Ann. Intern. Med. 135(1), 41–50 (2001)

    Google Scholar 

  • C. Hara, C., N., Wheeler, E., Sorensen, K., Arroyo, E., Vrankovich, G., A. Christian, Small sample whole-genome amplification. Smart Medical and Biomedical Sensor Technology III, Proceedings of the SPIE (2005)

  • T.M. Hooton, R. Besser, B. Foxman, T.R. Fritsche, L.E. Nicolle, Acute uncomplicated cystitis in an era of increasing antibiotic resistance: a proposed approach to empirical therapy Clin. Infect. Dis. 39(1), 75–80 (2004). doi:10.1086/422145

    Article  Google Scholar 

  • G.L. Koenig, Viability of and plasmid retention in frozen recombinant Escherichia coli over time: a ten-year prospective study Appl. Environ. Microbiol. 69(11), 6605–6609 (2003). doi:10.1128/AEM.69.11.6605-6609.2003

    Article  Google Scholar 

  • J.C. Liao, M. Mastali, V. Gau, M.A. Suchard, A.K. Moller, D.A. Bruckner, J.T. Babbitt, Y. Li, J. Gornbein, E.M. Landaw, E.R. McCabe, B.M. Churchill, D.A. Haake, Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens J. Clin. Microbiol. 44(2), 561–570 (2006). doi:10.1128/JCM.44.2.561-570.2006

    Article  Google Scholar 

  • J.C. Liao, M. Mastali, Y. Li, V. Gau, M.A. Suchard, J. Babbitt, J. Gornbein, E.M. Landaw, E.R. McCabe, B.M. Churchill, D.A. Haake, Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection J. Mol. Diagn. 9(2), 158–168 (2007). doi:10.2353/jmoldx.2007.060052

    Article  Google Scholar 

  • C. Lindan, M. Mathur, S. Kumta, H. Jerajani, A. Gogate, J. Schachter, J. Moncada, Utility of pooled urine specimens for detection of chlamydia trachomatis and neisseria gonorrhoeae in men attending public sexually transmitted infection clinics in mumbai, india, by pcr J. Clin. Microbiol. 43(4), 1674–1677(2005). doi:10.1128/JCM.43.4.1674-1677.2005

    Article  Google Scholar 

  • T. Poeckh, S. Lopez, A.O. Fuller, M.J. Solomon, R.G. Larson, Adsorption and elution characteristics of nucleic acids on silica surfaces and their use in designing a miniaturized purification unit Anal. Biochem. 373(2), 253–262 (2008). doi:10.1016/j.ab.2007.10.026

    Article  Google Scholar 

  • T. Rohr, C. Yu, M.H. Davey, F. Svec, J.M. Frechet, Porous polymer monoliths: Simple and efficient mixers prepared by direct polymerization in the channels of microfluidic chips Electrophoresis 22(18), 3959–3967 (2001). doi:10.1002/1522-2683(200110)22:18<3959::AID-ELPS3959>3.0.CO;2-5

    Article  Google Scholar 

  • T.B. Stachowiak, T. Rohr, E.F. Hilder, D.S. Peterson, M. Yi, F. Svec, J.M. Frechet, Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices Electrophoresis 24(21), 3689–3693 (2003). doi:10.1002/elps.200305536

    Article  Google Scholar 

  • J. Stenman, A. Orpana, Accuracy in amplification Nat. Biotechnol. 19(11), 1011–1012 (2001). doi:10.1038/nbt1101-1011b

    Article  Google Scholar 

  • A. Tan, S. Benetton, J.D. Henion, Chip-based solid-phase extraction pretreatment for direct electrospray mass spectrometry analysis using an array of monolithic columns in a polymeric substrate Anal. Chem. 75(20), 5504–5511 (2003). doi:10.1021/ac030196w

    Article  Google Scholar 

  • H. Tian, A.F. Huhmer, J.P. Landers, Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format Anal. Biochem. 283(2), 175–191 (2000). doi:10.1006/abio.2000.4577

    Article  Google Scholar 

  • M.A. Van Dilla, R.G. Langlois, D. Pinkel, D. Yajko, W.K. Hadley, Bacterial characterization by flow cytometry Science 220(4597), 620–622 (1983). doi:10.1126/science.6188215

    Article  Google Scholar 

  • H.Y. Wang, P.P. Banada, A.K. Bhunia, C. Lu, Rapid electrical lysis of bacterial cells in a microfluidic device Methods Mol. Biol. 385, 23–35 (2007). doi:10.1007/978-1-59745-426-1_3

    Article  Google Scholar 

  • K.A. Wolfe, M.C. Breadmore, J.P. Ferrance, M.E. Power, J.F. Conroy, P.M. Norris, J.P. Landers, Toward a microchip-based solid-phase extraction method for isolation of nucleic acids Electrophoresis 23(5), 727–733 (2002). doi:10.1002/1522-2683(200203)23:5<727::AID-ELPS727>3.0.CO;2-O

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Wallace H. Coulter Foundation for funding this research and H. Muayad for help with image analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Klapperich.

Additional information

Authors M. Dominika Kulinski and Madhumita Mahalanabis contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulinski, M.D., Mahalanabis, M., Gillers, S. et al. Sample preparation module for bacterial lysis and isolation of DNA from human urine. Biomed Microdevices 11, 671–678 (2009). https://doi.org/10.1007/s10544-008-9277-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9277-1

Keywords

Navigation