Skip to main content
Log in

Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The use of polymeric carriers containing dispersed magnetic nanocrystalline particles for targeted delivery of drugs in clinical practice has attracted the interest of the scientific community. In this paper a system comprised of alginate microparticles with a core of magnetite and carrying nerve growth factor (NGF) is described. The magnetic properties of these microspheres, typical of superparamagnetic materials, allow precise and controlled delivery to the intended tissue environment. Experiments carried out on PC12 cells with magnetic alginate microspheres loaded with NGF have confirmed the induction of cell differentiation which is strongly dependent on the distance from the microsphere cluster. In addition, finite element modelling (FEM) of the release profile from the microspheres in culture, indicated the possibility of creating defined and predictable NGF gradients from the loaded microspheres. These observations on the carriage and release of growth factors by the proposed microparticles open new therapeutic options for both neuronal regeneration and of the development of effective neuronal interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M. Arruebo, R. Fernandez-Pacheco, M.R. Ibarra, J. Santamaria, Magnetic nanoparticles for drug delivery. Nano Today 2(3), 22–32 (2007). doi:10.1016/S1748-0132(07)70084-1

    Article  Google Scholar 

  • R.P. Batycky, J. Hanes, R. Langer, D.A. Edwards, A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J. Pharm. Sci. 86, 1464–1477 (1997). doi:10.1021/js9604117

    Article  Google Scholar 

  • P. Berger, N.B. Adelman, K.J. Beckman, D.J. Campbell, A.B. Ellis, G.C. Lisensky, Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 76(7), 943–948 (1999)

    Article  Google Scholar 

  • M.A. Burns, G.I. Kvesitadze, D.J. Graves, Dried calcium alginate/magnetite spheres: a new support for chromatographic separations and enzyme immobilization. Biotechnol. Bioeng. 27(2), 137–145 (1985). doi:10.1002/bit.260270206

    Article  Google Scholar 

  • G. Ciofani, V. Raffa, A. Menciassi, P. Dario, Alginate and chitosan particles as drug delivery system for cell therapy. Biomed. Microdevices 10(2), 131–140 (2008a). doi:10.1007/s10544-007-9118-7

    Article  Google Scholar 

  • G. Ciofani, V. Raffa, T. Pizzorusso, A. Menciassi, P. Dario, Characterization of an alginate based drug delivery system for neurological applications. Med. Eng. Phys. 30(7), 848–855 (2008b). doi:10.1016/j.medengphy.2007.10.003

    Article  Google Scholar 

  • G. Ciofani, V. Raffa, Y. Obata, A. Menciassi, P. Dario, S. Takeoka, Magnetic driven alginate nanoparticles for targeted drug delivery. Curr. Nanosci. 4(2), 212–218 (2008c). doi:10.2174/157341308784340886

    Article  Google Scholar 

  • P. Couvreur, C. Vauthier, Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 23(7), 1417–1450 (2006). doi:10.1007/s11095-006-0284-8

    Article  Google Scholar 

  • P. Dario, P. Garzella, M. Toro, S. Micera, M. Alavi, J.U. Meyer, E. Valderrama, L. Sebastiani, B. Ghelarducci, P. Pastacaldi, A microfabricated interface for neural recording and stimulation. J. Micromech. Microeng. 7, 233–236 (1997). doi:10.1088/0960-1317/7/3/041

    Article  Google Scholar 

  • M. Ferrari, Nanovector therapeutics. Curr. Opin. Chem. Biol. 9, 343–346 (2006). doi:10.1016/j.cbpa.2005.06.001

    Article  Google Scholar 

  • G.F. Goya, V. Grazú, M.R. Ibarra, Magnetic nanoparticles for cancer therapy. Curr. Nanosci. 4(1), 1–16 (2008). doi:10.2174/157341308783591861

    Article  Google Scholar 

  • L.A. Greene, S.E. Farinelli, M.E. Cunningham, D.S. Park, in Culture and experimental use of the PC12 rat pheochromocytoma cell line, in: Culturing Nerve Cells 2, ed. by F. Banker, K. Goslin (MIT Press, Cambridge, 1998)

  • U. Häfeli, Magnetically modulated therapeutic systems. Int. J. Pharm. 277, 19–24 (2004). doi:10.1016/j.ijpharm.2003.03.002

    Article  Google Scholar 

  • B.P. Hanley, L. Xing, R.H. Cheng, Variance in multiplex suspension array assays: microsphere size variation impact. Theoretical Biology and Medical Modelling 4(31), 8 (2007)

    Google Scholar 

  • R. Hergt, S. Dutz, Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mat. 311, 187–192 (2007)

    Article  Google Scholar 

  • R. Heumann, D. Lindholm, C. Bandtlow, M. Meyer, M.J. Radeke, T.P. Misko, E. Shooter, H. Thoenen, Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. Natl. Acad. Sci. USA 84, 8735–8739 (1987)

    Article  Google Scholar 

  • S.H. Hu, T.Y. Liu, C.H. Tsai, S.Y. Chen, Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mat. 310, 2871–2873 (2007)

    Article  Google Scholar 

  • L.L. Jones, M.H. Tuszynski, Chronic intrathecal infusions after spinal cord injury cause scarring and compression. Microsc. Res. Tech. 54, 317–324 (2001)

    Article  Google Scholar 

  • R. Langer, Drug delivery and targeting. Nature 392, 5–10 (1998)

    Google Scholar 

  • N. Lago, D. Ceballos, F. Rodriguez, T. Stieglitz, X. Navarro, Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 26(14), 2021–2031 (2005)

    Article  Google Scholar 

  • S.L. Lewin, D.S. Utley, E.T. Cheng, A.N. Verity, D.J. Terris, Simultaneous treatment with BDNF and CNTF after peripheral nerve transaction and repair enhances rate of functional recovery compared with BDNF treatment alone. Laryngoscope 107, 992–999 (1997)

    Article  Google Scholar 

  • G. Lundborg, A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J. Hand Surg. [Am.] 25, 391–414 (2000)

    Article  Google Scholar 

  • S.M. Maskery, T. Shinbrot, Deterministic and stochastic elements of axonal guidance. Annu. Rev. Biomed. Eng. 7, 187–221 (2005)

    Article  Google Scholar 

  • D. Maysinger, A. Morinville, Drug delivery to the nervous system. Trends Biotechnol. 15, 410–418 (1997)

    Article  Google Scholar 

  • Y. Murakami, S. Furukawa, A. Nitta, Y. Furukawa, Accumulation of nerve growth factor protein at both rostral and caudal stumps in the transected rat spinal cord. J. Neurol. Sci. 198, 63–69 (2002)

    Article  Google Scholar 

  • X. Navarro, S. Calvet, C.A. Rodriguez, C. Blau, M. Buti, E. Valderrama, J.U. Meyer, T. Stieglitz, Stimulation and recording from regenerated peripheral nerves through polyimide sieve electrodes. J. Periph. Nerv. System 3, 91–101 (1998)

    Google Scholar 

  • X. Navarro, T. Lago, S. Micera, T. Stieglitz, P. Dario, A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Periph. Nerv. System 10, 229–258 (2005)

    Article  Google Scholar 

  • V. Raffa, P. Castrataro, A. Menciassi, P. Dario, in In Applied scanning probe methods, vol. II, ed. by B. Bushan, H. Fuchs (Springer, Heidelberg, 2005)

  • P.J. Robinson, P. Dunnill, M.D. Lilly, The properties of magnetic supports in relation to immobilized enzyme reactors. Biotechnol. Bioeng. 15(3), 603–606 (1973)

    Article  Google Scholar 

  • B.I. Rosner, R.A. Siegel, A. Grosberg, R.T. Tranquillo, Rational design of contact guiding, neurotrophic matrices for peripheral nerve regeneration. Ann. Biomed. Eng. 31, 1383–1401 (2003)

    Article  Google Scholar 

  • X. Santos, J. Rodrigo, B. Hontanilla, G. Bilbao, Evaluation of peripheral nerve regeneration by nerve growth factor locally administered with a novel system. J. Neurosci. Meth. 85, 119–127 (1998)

    Article  Google Scholar 

  • P. Sapra, T.M. Allen, Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res. 62(24), 7190–7194 (2002)

    Google Scholar 

  • C.E. Schmidt, L.B. Leach, Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5, 293–347 (2003)

    Article  Google Scholar 

  • M.D. Shultz, S. Calvin, P.P. Fatouros, S.A. Morrison, E.E. Carpenter, Enhanced ferrite nanoparticles as MRI contrast agents. J. Magn. Magn. Mat. 311, 464–468 (2007)

    Article  Google Scholar 

  • W. Schütt, C. Grüttner, U. Häfeli, M. Zborowski, J. Teller, H. Putzar, C. Schümichen, Applications of magnetic targeting in diagnosis and therapy—possibilities and limitations: a mini-review. Hybridoma 16(1), 109–117 (1997)

    Article  Google Scholar 

  • W.D. Snider, E.M. Johson, Neurotrophic molecules. Ann. Neurol. 26, 489–506 (1989)

    Article  Google Scholar 

  • C.M. Stoscheck, Quantitation of protein. Method. Enzymol. 182, 50–69 (1990)

    Article  Google Scholar 

  • S. Teotia, M.N. Gupta, Magnetite-alginate beads for purification of some starch degrading enzymes. Mol. Biotechnol. 20(3), 231–237 (2002)

    Article  Google Scholar 

  • M.H. Tuszynski, K. Gabriel, F.H. Gage, S. Suhr, S. Meyer, A. Rosetti, Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp. Neurol. 137, 157–173 (1996)

    Article  Google Scholar 

  • K.J. Widder, A.E. Senyei, D.G. Scarpelli, Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med. 158(2), 141–146 (1978)

    Google Scholar 

  • J.O. Winter, S.F. Cogan, J.F. Rizzo III, Neurotrophin-eluting hydrogel coatings for neural stimulating electrodes. J. Biomed. Mater. Res. Part B. Appl. Biomater. 81B, 551–563 (2007)

    Article  Google Scholar 

  • U. Zimmermann, G. Pilwat, Organ specific application of drugs by means of cellular capsule systems. J. Biosci. 31(11–12), 732–736 (1976)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was partially supported by the IIT (Italian Institute of Technology) Network and the NINIVE (Non Invasive Nanotransducer for In Vivo gene thErapy, STRP 033378) project, co-financed by the 6FP of the European Commission.

Authors gratefully thank Mr. Carlo Filippeschi for his kind support using the FIB microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Ciofani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciofani, G., Raffa, V., Menciassi, A. et al. Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor. Biomed Microdevices 11, 517–527 (2009). https://doi.org/10.1007/s10544-008-9258-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9258-4

Keywords

Navigation