Skip to main content
Log in

A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A 96-well solid-phase reversible immobilization (SPRI) reactor plate was designed to demonstrate functional titer plate-based microfluidic platforms. Nickel, large area mold inserts were fabricated using an SU-8 based, UV-LIGA technique on 150 mm diameter silicon substrates. Prior to UV exposure, the prebaked SU-8 resist was flycut to reduce the total thickness variation to less than 5 μm. Excellent UV lithography results, with highly vertical sidewalls, were obtained in the SU-8 by using an UV filter to remove high absorbance wavelengths below 350 nm. Overplating of nickel in the SU-8 patterns produced high quality, high precision, metal mold inserts, which were used to replicate titer plate-based SPRI reactors using hot embossing of polycarbonate (PC). Optimized molding conditions yielded good feature replication fidelity and feature location integrity over the entire surface area. Thermal fusion bonding of the molded PC chips at 150°C resulted in leak-free sealing, which was verified in leakage tests using a fluorescent dye. The assembled SPRI reactor was used for simple, fast purification of genomic DNA from whole cell lysates of several bacterial species, which was verified by PCR amplification of the purified genomic DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • P.-A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Anal. Chem. 74, 2637 (2002)

    Article  Google Scholar 

  • P.-A. Auroux, Y. Koc, A. deMello, A. Manz, P.J.R. Day, Lab Chip. 4, 534 (2004)

    Article  Google Scholar 

  • D.O. Barrett, A. Maha, Y. Wang, S.A. Soper, D.E. Nikitopoulos, M.C. Murphy, in MicroFluidics, BioMEMS, and Medical Microsystems II, vol. 5345, ed. by P. Woias, I. Papautsky. (SPIE, Bellingham, WA, 2004), p. 78

  • J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, New York, NY, 1988)

    Google Scholar 

  • F. Darvas, G. Dormán, P. Krajcsi, L.G. Puskás, Z. Kovári, Z. Lörincz, L. Ürge, Curr. Med. Chem. 11, 3119 (2004)

    Google Scholar 

  • P. Datta, F. Xu, S. Gurung, S.A. Soper, J. Goettert, in Microfluidics, BioMEMS, and Medical Microsystems IV, vol. 6112, ed. by I. Papautsky, W. Wang (SPIE, Bellingham, WA, 2006), p. 611208

    Google Scholar 

  • M.M. DeAngelis, D.G. Wang, T.L. Hawkins, Nucleic Acids Res. 23, 4742 (1995)

    Article  Google Scholar 

  • T.L. Edwards, S.K. Mohanty, R.K. Edwards, C.L. Thomas, A.B. Frazier, Microfluidic Devices and Systems III, vol. 4177, ed. by C.H. Mastrangelo, H. Becker, (SPIE, Bellingham, WA, 2000), p. 75

    Google Scholar 

  • C.J. Elkin, P.M. Richardson, H.M. Fourcade, N.M. Hammon, M.J. Pollard, P.F. Predki, T. Glavina, T.L. Hawkins, Genome Res. 11, 1269 (2001)

    Article  Google Scholar 

  • C.J. Elkin, H. Kapur, T. Smith, D. Humphries, M. Pollard, N. Hammon, T. Hawkins, BioTechniques, 32(6), 1296 (2002)

    Google Scholar 

  • D. Erickson, D. Li, Anal. Chim. Acta. 507, 11 (2004)

    Article  Google Scholar 

  • J.D. Gelorme, R.J. Cox, S.A.R. Guterrez, US Patent No. 4882245 (21 Nov 1989)

  • A. Gerlach, G. Knebel, A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, Th. Schaller, Microsyst. Technol. 7(5–6), 265 (2002a)

    Article  Google Scholar 

  • A. Gerlach, G. Knebel, A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, Th. Schaller, Sens. Mater. 14(3), 119 (2002b)

    Google Scholar 

  • A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Salie, L. Eichhorn, T. Gietzelt, W. Hoffmann, P.C. Hauser, J. Tanyanyiwa, A. Gerlach, N. Gottschlich, G. Knebel, Chem. Eng. J. 101, 447 (2004)

    Article  Google Scholar 

  • T.L. Hawkins, T.O’Connor-Morin, A. Roy, C. Santillan, Nucleic Acids Res. 22, 4543 (1994)

    Article  Google Scholar 

  • M. Heckele, W.K. Schomburg, J. Micromech. Microeng. 14, R1 (2004)

    Article  Google Scholar 

  • K. Honma, T. Miyata, T. Ochiya, Curr. Drug Discov. Technol. 1, 287 (2004)

    Article  Google Scholar 

  • Y. Huang, E.L. Mather, J.L. Bell, M. Madou, Anal. Bioanal. Chem. 372, 49 (2002)

    Article  Google Scholar 

  • M.L. Hupert, W.J. Guy, S.D. Llopis, C. Situma, S. Rani, D.E. Nikitopoulos, S.A. Soper, in Microfluidics, BioMEMS, and Medical Microsystems IV, vol. 6112, ed. by I. Papautsky, W. Wang (SPIE, Bellingham, WA, 2006), p. 61220B

    Google Scholar 

  • K.S. Kim, High Aspect Ratio Microstructures and Their Applications to MEMS, Ph.D. dissertation (The University of Texas at Dallas, Richardson, TX, USA, 2004)

  • D.S. Kim, S.H. Lee, C.H. Ahn, J.Y. Lee, T.H. Kwon, Lab Chip. 6, 794 (2006)

    Article  Google Scholar 

  • S.J. Lee, S.Y. Lee, Appl. Microbiol. Biotechnol. 64, 289 (2004)

    Article  Google Scholar 

  • J. Liu, C. Hansen, S. Quake, Anal. Chem. 75, 4718 (2003)

    Article  Google Scholar 

  • H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud, Sens. Actuators, A, Phys. 64(1), 33 (1998)

    Article  Google Scholar 

  • H. Lu, B. Pillans, J.-C. Lee, K. Kim, J.-B. Lee, Microsyst. Technol. 13(3–4), 237 (2007)

    Google Scholar 

  • D.A. Mair, E. Geiger, A.P. Pisano, J.M.J. Fréchet, F. Svec, Lab Chip. 6, 1346 (2006)

    Article  Google Scholar 

  • H. Mekaru, T. Yamada, S. Yan, T. Hattori, Microsyst. Technol. 10, 682 (2004)

    Article  Google Scholar 

  • M.W. Mitchell, X. Liu, Y. Bejat, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy, in MicroFluidics, BioMEMS, and Medical Microsystems, vol. 4982, ed. by H. Becker, P. Woias (SPIE, Bellingham, WA, 2003), p. 83

    Google Scholar 

  • Y. Murakoshi, C.S. Xue, T. Shimizu, R. Maeda, in 2003 Proceedings of the Fifth Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, ed. by B. Courtois, K. Markus, J. Korvink, J.M. Karam, K. Bergman, B. Michel, p. 304

  • P.J. Obeid, T.K. Christopoulos, H.J. Crabtree, C.J. Backhouse, Anal. Chem. 75, 288 (2003)

    Article  Google Scholar 

  • B.M. Paegel, S.H.I. Yeung, R.A. Mathies, Anal. Chem. 74, 5092 (2002)

    Article  Google Scholar 

  • R. Pal, M. Yang, R. Lin, B.N. Johnson, N. Srivastava, S.Z. Razzacki, K.J. Chomistek, D.C. Heldsinger, R.M. Haque, V.M. Ugaz, P.K. Thwar, Z. Chen, K. Alfano, M.B. Yim, M. Krishnan, A.O. Fuller, R.G. Larson, D.T. Burke, M.A. Burns, Lab Chip. 5, 1024 (2005)

    Article  Google Scholar 

  • D.S. Park, M. Hupert, J. Guy, P. Datta, J.-B. Lee, M. Witek, B.H. You, S.A. Soper, D.E. Nikitopoulos, M.C. Murphy, in 2006 Proceedings of the ASME International Mechanical Engineering Congress & Exposition (ASME, New York, NY, 2006), IMECE2006-15275

  • D.S. Park, M.L. Hupert, M. Witek, J. Guy, P. Datta, B.H. You, S.A. Soper, M.C. Murphy, in the 20th International Conference on Micro Electro Mechanical Systems (MEMS 2007), p. 433

  • S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, S.A. Soper, Lab Chip, 2(2), 88 (2002)

    Article  Google Scholar 

  • D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Anal. Chem. 74(12), 2623 (2002)

    Article  Google Scholar 

  • Society for Biomolecular Screening (SBS), Microplate Standards Development Committee, ANSI/SBS 1-2004 (SBS, Microplate Standards Development Committee, Danbury, CT, 2004)

  • F.M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1974)

    MATH  Google Scholar 

  • F.M. White, Fluid Mechanics (McGraw-Hill, New York, 1986)

    Google Scholar 

  • M.A. Witek, S. Wei, B. Vaidya, A.A. Adams, L. Zhu, W. Stryjewski, R.L. McCarley, S.A. Soper, Lab Chip. 4, 464 (2004)

    Article  Google Scholar 

  • M.A. Witek, S.D. Llopis, A. Wheatley, R.L. McCarley, S.A. Soper, Nucleic Acid Res. 34(10), e74 (2006)

    Article  Google Scholar 

  • M. Worgull, M. Heckele, Microsyst. Technol. 10(5), 432 (2004)

    Article  Google Scholar 

  • M. Worgull, M. Heckele, W.K. Schomburg, Microsyst. Technol. 12(1–2), 110 (2005)

    Article  Google Scholar 

  • Y. Xu, B. Vaidya, A.B. Patel, S.M. Ford, R.L. McCarley, S.A. Soper, Anal. Chem. 75(13), 2975 (2003)

    Article  Google Scholar 

  • B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation and the State of Louisiana Board of Regents Support Fund under grant number EPS-0346411, and the State of Louisiana Board of Regents Support Fund, Industrial Ties Program through grant number LEQSF(2005-08)-RD-B-04. The authors thank the staff of the Center for Advanced Microstructures and Devices (CAMD) at Louisiana State University for the microfabrication support. J. Guy was funded by a Louisiana Governor’s Biotechnology Initiative grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, D.SW., Hupert, M.L., Witek, M.A. et al. A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification. Biomed Microdevices 10, 21–33 (2008). https://doi.org/10.1007/s10544-007-9106-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9106-y

Keywords

Navigation