Skip to main content
Log in

New technology for cellular piercing: rotationally oscillating μ-injector, description and validation tests

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

ICSI (intracytoplasmic sperm injection) procedure is one of the most commonly used cellular-injection processes. In ICSI a drawn glass pipette is pushed against the biological cell and a series of force impulses are exerted on it axially to achieve the piercing through the zona and the membrane in sequence for the ensuing injection. In most advanced applications a piezo actuator creates this impulsive forcing. This procedure presently requires a very small mercury column inside the glass pipette which is found to be helpful especially for minimizing the transverse oscillations. Despite the toxic mercury, the procedure is commonly utilized in many laboratories. Earlier investigations point out that considerable lateral tip oscillations of the injection pipette remain as the piezo-electric pulses are introduced. Such oscillations damage the cell membrane and impart adverse effects on the success rate of the injection. In this study, we introduce a novel microinjection procedure, which will remedy the shortfalls of the present technology. The highlight of this procedure is the introduction of rotational oscillations to the pipette during the drilling. These oscillations of small amplitudes (few degrees) and high enough frequencies (100 Hz and higher) are shown to create very effective piercing. The so-called Ros-Drill© is a mercury-free and minimally invasive device of which the prototypes are designed and built including the relevant peripheral control hardware and software. Preliminary experimental results are presented on mouse oocytes and they are very encouraging. In the early trials on mouse oocytes, several blastocyst stage developments are reported using new drilling device. We also explain in this text the implementation protocols developed for the new technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • M. Bonduelle, I. Liebaers, V. Deketelaere, M.P. Derde, M. Camus, P. Devroey, A.V. Steirteghem, Hum. Reprod. 17(3), 671–694 (2002)

    Article  Google Scholar 

  • P. Collas, F.L. Barnes, Mol. Reprod. Dev. 38(3), 264–267 (1994)

    Article  Google Scholar 

  • D. Dozortsev, T. Wakayama, A. Ermilov, R. Yanagimachi, Zygote 6(2), (1998)

  • K. Ediz, N. Olgac, IEEE Trans. Biomed. Eng. 51(7), 1262–1268 (2004) July

    Article  Google Scholar 

  • K. Ediz, N. Olgac, “Effect of mercury column on the microdynamics of the piezo-driven pipettes”. ASME J. Biomech. Eng. 127, 531–535 (2005)

    Article  Google Scholar 

  • A. Fonttis, R. Napolitano, M.A. Tomas, Reprod. Biomed. Online 5(3), 270–272 (2002)

    Article  Google Scholar 

  • T. Huang, Y. Kimura, R. Yanagimachi, J. Assist. Reprod. Genet. 13(4), 320–328 (1996)

    Article  Google Scholar 

  • H. Katayose, K. Yanagida, T. Shinoki, T. Kawahara, T. Horiuchi, A. Sato, Theriogenology 52, 1215–1224 (1999)

    Article  Google Scholar 

  • Y. Kawase, T. Iwata, Y. Toyoda, T. Wakayama, R. Yanagimachi, H. Suzuki, Mol. Reprod. Dev. 60, 74–78 (2001)

    Article  Google Scholar 

  • Y. Kawase, T. Iwata, O. Ueda, N. Kamada, T. Tachibe, Y. Aoki, K. Jishage, H. Suzuki, Biol. Reprod. 66, 381–385 (2002)

    Article  Google Scholar 

  • Y. Kimura, R. Yanagimachi, Biol. Reprod. 52(4), 709–720 (1995)

    Article  Google Scholar 

  • Y. Kimura, R. Yanagimachi, S. Kuretake, H. Bortkiewicz, A.C.F. Perry, H. Yanagimachi, Biol. Reprod. 58(6), 1407–1415 (1998)

    Article  Google Scholar 

  • L. Meng, D.P. Wolf, Hum. Reprod. 12, 1062–1068 (1997)

    Article  Google Scholar 

  • T. Nakayama, H. Fijiwara, K. Tastumi, K. Fujita, T. Higuchi, T. Mori, Fertil. Steril. 69(4) (1998)

  • G. Palermo, H. Joris, P. Devroey, A.C. Van Steirteghem, Lancet 340 (1992)

  • M. Plachot, J. Belaisch-Allart, J.M. Mayenga, A. Chouraqui, L. Tesquier, A.M. Serkine, Hum. Reprod. 17(2), 362–369 (2002)

    Article  Google Scholar 

  • R. Suttner, V. Zakhartchenko, P. Stojkovic, S. Muller, R. Alberio, I. Medjugorac, G. Brem, E. Wolf, M. Stojkovic, Theriogenology 54(6), 935–948 (2000)

    Article  Google Scholar 

  • S. Takeuchi, H. Minoura, T. Shibahara, X. Shen, N. Futamura and N. Toyoda, Gynecol. Obstet. Investig. 52, 158–162 (2001)

    Article  Google Scholar 

  • T. Wakayama, R. Yanagimachi, Nat. Biotechnol. 16, 639–641 (1998) July

    Article  Google Scholar 

  • K. Yanagida, H. Katayose, H. Yazawa, Y. Kimura, K. Konnai, A. Sato, Hum. Reprod. 14(2), 448–453 (1998)

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to express their appreciation to Prof. Xiangzhong (Jerry) Yang and Dr. Li-Ying Sung for the invaluable assistance in biological tests, and making accessible the facilities of Center for Regenerative Biology and Department of Animal Science, University of Connecticut. This work is partly sponsored by NIH grant, number 1R24RR018934-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejat Olgac.

Additional information

Ros-Drill© patent (USA and int’l) pending

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ergenc, A.F., Olgac, N. New technology for cellular piercing: rotationally oscillating μ-injector, description and validation tests. Biomed Microdevices 9, 885–891 (2007). https://doi.org/10.1007/s10544-007-9102-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9102-2

Keywords

Navigation