Skip to main content
Log in

Self-Actuated, Thermo-Responsive Hydrogel Valves for Lab on a Chip

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An easy to fabricate, thermally-actuated, self-regulated hydrogel valve for flow control in pneumatically driven, microfluidic systems is described. This microvalve takes advantage of the properties of the hydrogel, poly(N-isopropylacrylamide), as well as the aqueous fluid itself to realize flow control. The valve was designed for use in a diagnostic system fabricated with polycarbonate and aimed at the detection of pathogens in oral fluids at the location of the sample collection. The paper describes the construction and characterization of the hydrogel valves and their application for flow control, sample and reagent metering, sample distribution into multiple analysis paths, and the sealing of a polymerase chain reaction (PCR) reactor to suppress bubble formation. The hydrogel-based flow control is electronically addressable, does not require any moving parts, introduces minimal dead volume, is leakage and contaminant free, and is biocompatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, and B.H. Jo, Nature 404, 588 (2000).

    Article  Google Scholar 

  • Z.Y. Chen, S.Z. Qian, W.R. Abrams, D. Malamud, and H.H. Bau, Analytical Chemistry 76, 3707 (2004).

    Google Scholar 

  • I. Chakraborty, W.C. Tang, D.P. Bame, and T.K. Tang, Sensors and Actuators a-Physical 83, 188 (2000).

    Google Scholar 

  • Z. Chen, J. Wang, and H.H. Bau, Lab on Chip, DOI: 10.1039/b508275g.

  • J.D. Evans and D. Liepmann, 10th International Conference on Solid-State Sensors and Actuators 1999, 1796 (1999).

  • C. Fu, Z. Rummler, and W. Schomburg, Journal of Micromechanics and Microengineering 13, S96 (2003).

    Article  Google Scholar 

  • L. Gui and J. Liu, Journal of Micromechanics and Microengineering 14, 242 (2004).

    Article  Google Scholar 

  • D.J. Gan and L.A. Lyon, Journal of the American Chemical Society 123, 7511 (2001).

    Google Scholar 

  • R.A. Gemeinhart, H. Park, and K. Park, Journal of Biomedical Materials Research 55, 54 (2001).

    Article  Google Scholar 

  • M.A. Huff, M.S. Mettner, T.A. Lober, and M.A. Schmidt, Tech Digest, Solid-State Sensor Actuator Workshop 1990, 123 (1990).

  • C.C. Hong, J.W. Choi, and C.H. Ahn, Lab on a Chip 4, 109 (2004).

    Article  Google Scholar 

  • H. Hartshorne, C.J. Backhouse, and W.E. Lee, Sensors and Actuators B-Chemical 99, 592 (2004).

    Article  Google Scholar 

  • M.E. Harmon, M. Tang, and C.W. Frank, Polymer 44, 4547 (2003).

    Google Scholar 

  • S. Kluge, G. Klink, and P. Woias, American Laboratory 30, 17 (1998).

    Google Scholar 

  • W. Kuhn, B. Hargitay, A. Katchalsky, and H. Eisenberg, Nature 165, 514 (1950).

    Google Scholar 

  • D. Kuckling, M.E. Harmon, and C.W. Frank, Macromolecules 35, 6377 (2002).

    Article  Google Scholar 

  • K. Kataoka, H. Miyazaki, M. Bunya, T. Okano, and Y. Sakurai, Journal of the American Chemical Society 120, 12694 (1998).

    Article  Google Scholar 

  • N. Kato, S. Yamanobe, and F. Takahashi, Materials Science & Engineering C-Biomimetic Materials Sensors and Systems 5, 141 (1997).

    Google Scholar 

  • E.T. Lagally, J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley, and R.A. Mathies, Analytical Chemistry 76, 3162 (2004).

    Article  Google Scholar 

  • Y.J. Liu, C.B. Rauch, R.L. Stevens, R. Lenigk, J.N. Yang, D.B. Rhine, and P. Grodzinski, Analytical Chemistry 74, 3063 (2002).

    Google Scholar 

  • S.K. Li and A. D'Emanuele, Journal of Controlled Release 75, 55 (2001).

    Article  Google Scholar 

  • R.H. Liu, Q. Yu, and D.J. Beebe, Journal of Microelectromechanical Systems 11, 45 (2002).

    Article  Google Scholar 

  • Y. Liu, J.L. Velada, and M.B. Huglin, Polymer 40, 4299 (1999).

    Google Scholar 

  • T. Miyata, N. Asami, and T. Uragami, Nature 399, 766 (1999).

    Article  Google Scholar 

  • D. Malamud, H. Bau, S. Niedbala, and P. Corstjens, Point Detection of Pathogens in Oral Samples, Adv Dent Res 18, 12–16 (2005).

    Article  Google Scholar 

  • N.T. Nguyen, T.Q. Truong, K.K. Wong, S.S. Ho, and C.L.N. Low, Journal of Micromechanics and Microengineering 14, 69 (2004).

    Google Scholar 

  • L.T. Ng, S. Jonsson, S. Swami, and K. Lindgren, Polymer International 51, 1398 (2002).

    Article  Google Scholar 

  • C.R. Nuttelman, S.M. Henry, and K.S. Anseth, Biomaterials 23, 3617 (2002).

    Article  Google Scholar 

  • A.P. Papavasiliou, A.P. Pisano, and D. Liepmann, Proceedings 11th International Conference on Solid State Sensors and Actuators, 940 (2001).

  • R. Pal, M. Yang, B.N. Johnson, D.T. Burke, and M.A. Burns, Analytical Chemistry 76, 3740 (2004).

    Google Scholar 

  • R. Pelton, Advances in Colloid and Interface Science 85, 1 (2000).

    Article  Google Scholar 

  • A. Richter, D. Kuckling, S. Howitz, T. Gehring, and K.F. Arndt, Journal of Microelectromechanical Systems 12, 748 (2003).

    Article  Google Scholar 

  • A. Richter, S. Howitz, D. Kuckling, and K.F. Arndt, Sensors and Actuators B-Chemical 99, 451 (2004).

    Google Scholar 

  • D.A. Rasko, J. Ravel, O.A. Okstad, E. Helgason, R.Z. Cer, L.X. Jiang, K.A. Shores, D.E. Fouts, N.J. Tourasse, S.V. Angiuoli, J. Kolonay, W.C. Nelson, A.B. Kojsto, C.M. Fraser, and T.D. Read, Nucleic Acids Research 32, 977 (2004)

    Article  Google Scholar 

  • M. Shikida, K. Sato, S. Tanaka, Y. Kawamura, and Y. Fujisaki, Journal of Microelectromechanical Systems 3, 76 (1994).

    Article  Google Scholar 

  • H.G. Schild, Progress in Polymer Science 17, 163 (1992).

    Article  Google Scholar 

  • T. Thorsen, S.J. Maerkl, and S.R. Quake, Science 298, 580 (2002).

    Article  Google Scholar 

  • A.J. Thornton, E. Alsberg, M. Albertelli, and D.J. Mooney, Transplantation 77, 1798 (2004).

    Article  Google Scholar 

  • T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, and J. Peetermans, Physical Review Letters 55, 2455 (1985).

    Google Scholar 

  • T. Tanaka, I. Nishio, S.T. Sun, and S. Uenonishio, Science 218, 467 (1982).

    Google Scholar 

  • C. Yu, S. Mutlu, P. Selvaganapathy, C.H. Mastrangelo, F. Svec, and J.M.J. Frechett, Analytical Chemistry 75, 1958 (2003).

    Google Scholar 

  • R.A. Zangmeister and M.J. Tarlov, Analytical Chemistry 76, 3655 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim H. Bau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Chen, Z., Mauk, M. et al. Self-Actuated, Thermo-Responsive Hydrogel Valves for Lab on a Chip. Biomed Microdevices 7, 313–322 (2005). https://doi.org/10.1007/s10544-005-6073-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-6073-z

Keywords

Navigation